hdu 3328 Flipper(栈模拟)

本文介绍了一个名为Flipper的单人记忆游戏,玩家需要通过一系列翻转操作来改变卡片的顺序和朝向。文章详细解释了游戏规则,并提供了一个示例程序来模拟游戏过程,帮助理解如何实现翻转操作及查询特定位置卡片的状态。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Flipper

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 630    Accepted Submission(s): 384


Problem Description
Little Bobby Roberts (son of Big Bob, of Problem G) plays this solitaire memory game called Flipper. He starts with n cards, numbered 1 through n, and lays them out in a row with the cards in order left-to-right. (Card 1 is on the far left; card n is on the far right.) Some cards are face up and some are face down. Bobby then performs n - 1 flips — either right flips or left flips. In a right flip he takes the pile to the far right and flips it over onto the card to its immediate left. For example, if the rightmost pile has cards A, B, C (from top to bottom) and card D is to the immediate left, then flipping the pile over onto card D would result in a pile of 4 cards: C, B, A, D (from top to bottom). A left flip is analogous.

The very last flip performed will result in one pile of cards — some face up, some face down. For example, suppose Bobby deals out 5 cards (numbered 1 through 5) with cards 1 through 3 initially face up and cards 4 and 5 initially face down. If Bobby performs 2 right flips, then 2 left flips, the pile will be (from top to bottom) a face down 2, a face up 1, a face up 4, a face down 5, and a face up 3.

Now Bobby is very sharp and you can ask him what card is in any position and he can tell you!!! You will write a program that matches Bobby’s amazing feat.
 

Input
Each test case will consist of 4 lines. The first line will be a positive integer n (2 ≤ n ≤ 100) which is the number of cards laid out. The second line will be a string of n characters. A character U indicates the corresponding card is dealt face up and a character D indicates the card is face down. The third line is a string of n - 1 characters indicating the order of the flips Bobby performs. Each character is either R, indicating a right flip, or L, indicating a left flip. The fourth line is of the form m q1 q2 . . . qm, where m is a positive integer and 1 ≤ qin. Each qi is a query on a position of a card in the pile (1 being the top card, n being the bottom card). A line containing 0 indicates end of input.
 

Output
Each test case should generate m + 1 lines of output. The first line is of the form
Pile t
where t is the number of the test case (starting at 1). Each of the next m lines should be of the form
Card qi is a face up k.
or
Card qi is a face down k.
accordingly, for i = 1, .., m, where k is the number of the card.
For instance, in the above example with 5 cards, if qi = 3, then the answer would be
Card 3 is a face up 4.
 

Sample Input
  
5 UUUDD RRLL 5 1 2 3 4 5 10 UUDDUUDDUU LLLRRRLRL 4 3 7 6 1 0
 

Sample Output
  
Pile 1 Card 1 is a face down 2. Card 2 is a face up 1. Card 3 is a face up 4. Card 4 is a face down 5. Card 5 is a face up 3. Pile 2 Card 3 is a face down 1. Card 7 is a face down 9. Card 6 is a face up 7. Card 1 is a face down 5.
 

Source
题目分析:读懂题栈模拟即可,很容易,记录好状态
 
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <stack>
#define MAX 107

using namespace std;

int n,m;
char card[MAX];
char op[MAX];
int l,r;
int state[MAX];
stack<int> s[MAX];
int ans[MAX];

int main ( )
{
    int c = 1;
    while ( ~scanf ( "%d" , &n ) , n ) 
    {
        scanf ( "%s" , card+1 );
        scanf ( "%s" , op+1 );
        l = 1 , r = n;
        for ( int i = 1 ; i <= n ; i++ )
            state[i] = card[i]=='U'?1:0;
        for ( int i = 1 ; i <= n ; i++ )
            s[i].push ( i );
        for ( int i = 1 ; i < n ; i++ )
        {
            if ( op[i] == 'R' )
            {
                while ( !s[r].empty() )
                {
                    s[r-1].push ( s[r].top() );
                    state[s[r].top()] ^= 1;
                    s[r].pop();
                }
                r = r-1;
            }
            else
            {
                while ( !s[l].empty() )
                {
                    s[l+1].push ( s[l].top() );
                    state[s[l].top()] ^= 1;
                    s[l].pop();
                }
                l = l+1;
            }
        }
        int cnt = 1;
        while ( !s[l].empty() )
        {
            ans[cnt++] = s[l].top();
            s[l].pop();
        }
        int u;
        scanf ( "%d" , &m );
        printf ( "Pile %d\n" , c++ );
        while ( m-- )
        {
            scanf ( "%d" , &u );
            printf ( "Card %d is a face %s %d.\n" ,  u , state[ans[u]]?"up":"down" , ans[u] );
        }
    }
}


内容概要:本文档详细介绍了Analog Devices公司生产的AD8436真均方根-直流(RMS-to-DC)转换器的技术细节及其应用场景。AD8436由三个独立模块构成:轨到轨FET输入放大器、高动态范围均方根计算内核和精密轨到轨输出放大器。该器件不仅体积小巧、功耗低,而且具有广泛的输入电压范围和快速响应特性。文档涵盖了AD8436的工作原理、配置选项、外部组件选择(如电容)、增益调节、单电源供电、电流互感器配置、接地故障检测、三相电源监测等方面的内容。此外,还特别强调了PCB设计注意事项和误差源分析,旨在帮助工程师更好地理解和应用这款高性能的RMS-DC转换器。 适合人群:从事模拟电路设计的专业工程师和技术人员,尤其是那些需要精确测量交流电信号均方根值的应用开发者。 使用场景及目标:①用于工业自动化、医疗设备、电力监控等领域,实现对交流电压或电流的精准测量;②适用于手持式数字万用表及其他便携式仪器仪表,提供高效的单电源解决方案;③在电流互感器配置中,用于检测微小的电流变化,保障电气安全;④应用于三相电力系统监控,优化建立时间和转换精度。 其他说明:为了确保最佳性能,文档推荐使用高质量的电容器件,并给出了详细的PCB布局指导。同时提醒用户关注电介质吸收和泄漏电流等因素对测量准确性的影响。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值