tju 4070 简单dp

一维路径最小成本算法
本文介绍了一种在一维路径上寻找从起点到终点最小成本的算法,要求按红绿蓝颜色顺序行走,每步成本为步长的平方。通过动态规划的方法实现了该算法,并给出了具体的实现代码。
4070.   Road
Time Limit: 1.0 Seconds    Memory Limit: 65536K
Total Runs: 84    Accepted Runs: 76



There is a one-dimensional road. The road is separated into N consecutive parts. The parts are numbered 0 through N-1, in order. MJ is going to walk from part 0 to part N-1.

MJ also noticed that each part of the road has a color: either red, green, or blue. Part 0 is red.

MJ is going to perform a sequence of steps. Each step must lead in the positive direction. That is, if his current part is i, the next step will take him to one of the parts i+1 through N-1, inclusive. His steps can be arbitrarily long. However, longer steps are harder: a step of length j costs j*j energy.

Additionally, MJ wants to step on colors in a specific order: red, green, blue, red, green, blue, ... That is, he starts on the red part 0, makes a step to a green part, from there to a blue part, and so on, always repeating red, green, and blue in a cycle. Note that the final part N-1 also has some color and thus MJ must reach it in a corresponding step.

You are given a String road containing N elements. For each i, element i of road is the color of part i: 'R' represents red, 'G' green, and 'B' blue. If MJ can reach part N-1 in the way described above, return the smallest possible total cost of doing so. Otherwise, return -1.

Input

First line is a integer T, the number of test cases.

The next T lines, each line is a string S represent the road.The length of S is no longer than 20.

Output

For each test case, output the smallest possible total cost or -1 if it's impossible.

Sample Input

4
RGGGB
RGBRGBRGB
RBBGGGRR
RBRRBGGGBBBBR

Sample Output

8
8
-1
50


Source: TJU Team Selection 2014 Round1


题意:每次走步的花费为长度的平方,必须按照红绿蓝的顺序走,问走到路的尽头的最小花费

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#define MAX 27

using namespace std;

int n;
char road[MAX];
int dp[MAX][MAX];


int get ( char ch )
{
    if ( ch == 'R' ) return 0;
    if ( ch == 'G' ) return 1;
    else return 2;
}

int main ( )
{
    scanf ( "%d" , &n );
    while ( n -- )
    {
        scanf ( "%s" , road );
        memset ( dp , 0x3f , sizeof ( dp ) );
        int INF = dp[0][0];
        int ans = INF;
        dp[0][0] = 0;
        int len = strlen ( road );
        for ( int i = 1 ; i <= len ; i++ )
            for ( int j = i ; j < len ; j++ )
            {
                if ( get ( road[j] ) == i%3 )
                    for ( int k = 0 ; k < j ; k++ )
                        if ( get ( road[k] ) == (i-1)%3 )
                            dp[i][j] = min ( dp[i][j] , dp[i-1][k] + (j-k)*(j-k) );
                if ( j == len-1 ) ans = min ( ans , dp[i][j] );
            }
        if ( ans >= INF ) puts ( "-1" );
        else printf ( "%d\n" , ans );   
    }
}


一、数据采集层:多源人脸数据获取 该层负责从不同设备 / 渠道采集人脸原始数据,为后续模型训练与识别提供基础样本,核心功能包括: 1. 多设备适配采集 实时摄像头采集: 调用计算机内置摄像头(或外接 USB 摄像头),通过OpenCV的VideoCapture接口实时捕获视频流,支持手动触发 “拍照”(按指定快捷键如Space)或自动定时采集(如每 2 秒采集 1 张),采集时自动框选人脸区域(通过Haar级联分类器初步定位),确保样本聚焦人脸。 支持采集参数配置:可设置采集分辨率(如 640×480、1280×720)、图像格式(JPG/PNG)、单用户采集数量(如默认采集 20 张,确保样本多样性),采集过程中实时显示 “已采集数量 / 目标数量”,避免样本不足。 本地图像 / 视频导入: 支持批量导入本地人脸图像文件(支持 JPG、PNG、BMP 格式),自动过滤非图像文件;导入视频文件(MP4、AVI 格式)时,可按 “固定帧间隔”(如每 10 帧提取 1 张图像)或 “手动选择帧” 提取人脸样本,适用于无实时摄像头场景。 数据集对接: 支持接入公开人脸数据集(如 LFW、ORL),通过预设脚本自动读取数据集目录结构(按 “用户 ID - 样本图像” 分类),快速构建训练样本库,无需手动采集,降低系统开发与测试成本。 2. 采集过程辅助功能 人脸有效性校验:采集时通过OpenCV的Haar级联分类器(或MTCNN轻量级模型)实时检测图像中是否包含人脸,若未检测到人脸(如遮挡、侧脸角度过大),则弹窗提示 “未识别到人脸,请调整姿态”,避免无效样本存入。 样本标签管理:采集时需为每个样本绑定 “用户标签”(如姓名、ID 号),支持手动输入标签或从 Excel 名单批量导入标签(按 “标签 - 采集数量” 对应),采集完成后自动按 “标签 - 序号” 命名文件(如 “张三
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值