因为要求区间内子串的个数
先考虑求整体子串个数时每个后缀贡献的子串是n-sa[i]-height[i],也就是从头到某一处算一个子串,因为height[i]是最大公共前缀,所以已经计算过,故舍去
换到求区间内的,只不过是将不符合的去掉然后同样方法计算,求取两个不相邻排序的最长公共子串时,只需记录他们之间height[i]的最小值,可以用rmq求取,也可以按照我的方法在扫区间的过程中记录一下就可以了
#include <cstring>
#include <algorithm>
#include <cstdio>
#include <iostream>
#define MAX 2007
using namespace std;
char s[MAX];
int r[MAX],sa[MAX],wa[MAX],wb[MAX],wv[MAX],wss[MAX],rank[MAX],height[MAX];
int cmp ( int *r , int a , int b , int len )
{
return r[a]==r[b]&&r[a+len]==r[b+len];
}
void da ( int* r , int* sa , int n , int m )
{
int i,j,p, *x = wa , *y = wb , *t;
for ( i = 0 ; i < m ; i++ ) wss[i] = 0;
for ( i = 0 ; i < n ; i++ ) wss[x[i] = r[i]]++;
for ( i = 0 ; i < m ; i++ ) wss[i] += wss[i-1];
for ( i = n-1 ; i >= 0 ; i-- ) sa[--wss[x[i]]] = i;
for ( j = 1 , p = 1 ; p < n ; j *= 2 , m = p )
{
for ( p = 0 , i = n - j ; i < n ; i++ ) y[p++] = i;
for ( i = 0 ; i < n ; i++ ) if ( sa[i] >= j ) y[p++] = sa[i]-j;
for ( i = 0 ; i < n ; i++ ) wv[i] = x[y[i]];
for ( i = 0 ; i < m ; i++ ) wss[i] = 0;
for ( i = 0 ; i < n ; i++ ) wss[wv[i]]++;
for ( i = 0 ; i < m ; i++ ) wss[i] += wss[i-1];
for ( i = n-1 ; i >= 0 ; i-- ) sa[--wss[wv[i]]] = y[i];
for ( t = x , x = y , y = t , p = 1 , x[sa[0]] = 0 , i = 1 ; i < n ; i++ )
x[sa[i]] = cmp ( y , sa[i-1] , sa[i] , j ) ? p-1 : p++;
}
}
void calheight ( int *r , int *sa , int n )
{
int i , j , k = 0;
for ( i = 1 ; i <= n ; i++ ) rank[sa[i]] = i;
for ( i = 0 ; i < n ; height[rank[i++]] = k )
for ( k?k--:0, j = sa[rank[i]-1] ; r[i+k] == r[j+k] ; k++ );
}
int main ( )
{
int t,m,u,v;
scanf ( "%d" , &t );
while ( t-- )
{
scanf ( "%s" , s );
int len = strlen ( s );
for ( int i = 0 ; i < len ; i++ ) r[i] = s[i] - 'a' + 1;
da ( r , sa , len+1 , 27 );
calheight ( r , sa , len );
scanf ( "%d" , &m );
while ( m -- )
{
scanf ( "%d%d" , &u , &v );
int ans = ( v - u + 1 ) * ( v - u + 2 ) / 2;
u--,v--;
int temp = MAX;
int d = 0 , pre = 0;
for ( int i = 1 ; i <= len ; i++ )
{
temp = min ( temp , height[i] );
if ( sa[i] < u || sa[i] > v ) continue;
d = min ( d , temp );
d = max ( d , min ( temp , v - pre + 1 ) );
ans -= min ( d , v - sa[i] + 1 );
pre = sa[i];
temp = MAX;
}
printf ( "%d\n" , ans );
}
}
}