tensorflow中如何查看梯度

本文探讨了梯度消失与爆炸对神经网络训练的影响,提供了检查梯度的方法,特别是使用TensorFlow的gradients函数来诊断问题。适用于解决训练过程中loss不收敛的常见问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.为什么要查看梯度

对于初学者来说网络经常不收敛,loss很奇怪(就是不收敛),所以怀疑是反向传播中梯度的问题

(1)求导之后的数(的绝对值)越来越小(趋近于0),这就是梯度消失

(2)求导之后的数(的绝对值)越来越大(特别大,发散),这就是梯度爆炸

所以说呢,当loss不正常时,可以看看梯度是否处于爆炸,或者是消失了,梯度爆炸的话,网络中的W也会很大,人工控制一下(初始化的时候弄小点等等肯定还有其它方法,只是我不知道,知道的大神也可以稍微告诉我一下~~),要是梯度消失,可以试着用用resnet,densenet之类的

2.tensorflow中如何查看梯度

tf.gradients(y,x)这里的就是y对于x的导数(dy/dx),x和y一定要有关联哦~

直接tf.gradients(y_, weight1)就可以了~

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值