原理就不说了,其它博客上说得非常详细,Logistic回归梯度上升算法代码如下:
from numpy import *
def loadDataSet():
dataMat= [];labelMat= []
fr = open('testSet.txt')
for line in fr.readlines():
lineArr = line.strip().split()
dataMat.append([1.0,float(lineArr[0]),float(lineArr[1])])
labelMat.append(int((lineArr[2])))
return dataMat,labelMat
def sigmoid(inX):
return 1.0/(1+exp(-inX))
def gradAscent(dataMatIn,classLabels):
dataMatrix = mat(dataMatIn)
labelMat = mat(classLabels).transpose()
m,n = shape(dataMatrix)
alpha = 0.001
maxCycles = 500 #迭代次数
weights = ones((n,1))
for k in range(maxCycles):
h = sigmoid(dataMatrix*weights)
error = (labelMat - h)
weights = weights + alpha * dataMatrix.transpose() * error
#alpha是移动的步长
return weights
结果为:
>>> import logRegres
>>> dataMat,labelMat=logRegres.loadDataSet()
>>> logRegres.gradAscent(dataMat,labelMat)
matrix([[ 4.12414349],
[ 0.48007329],
[-0.6168482 ]])
接下来将数据进行可视化,拟合出图形:
def plotBestFit(weights):
import matplotlib.pyplot as plt
dataMat,labelMat=loadDataSet()
dataArr = array(dataMat)
n = shape(dataArr)[0]
xcord1 = [];ycord1 = []
xcord2 = [];ycord2 = []
for i in range(n):
if int(labelMat[i]) == 1:
xcord1.append(dataArr[i,1]);ycord1.append(dataArr[i,2])
else:
xcord2.append(dataArr[i,1]);ycord2.append(dataArr[i,2])
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(xcord1,ycord1,s=30,c='red',marker='s')
ax.scatter(xcord2,ycord2,s=30,c='green')
x = arange(-3.0,3.0,0.1)
y = (-weights[0]-weights[1]*x)/weights[2]
ax.plot(x,y)
plt.xlabel('X1');plt.ylabel('X2');
plt.show()
以上代码是用Matplotlib画出来的,此处设置了sigmoid函数为0。
运行结果如下:
这里书上有一处错误,原来书上代码会提示错误:
>>> logRegres.plotBestFit(weights.getA())
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
NameError: name 'weights' is not defined
加上一句:
weights = logRegres.gradAscent(dataArr, labelMat)
运行正常。
上述方法需要迭代多次,准确地说是500次,这里样本只有100个,数据集非常小,所以运行很快,数据量巨大的时候算法将会非常慢。
采用随机梯度上升算法来训练,伪代码如下:
所有回归系数初始化为1
对数据集中每个样本:
计算该样本的密度
使用alpha×gradient更新回归系数值
返回回归系数值
代码如下:
def stocGradAscent0(dataMtrix,classLabels):
m,n = shape(dataMtrix)
alpha = 0.001
weights = ones(n)
for i in range(m):
h = sigmoid(sum(dataMtrix[i]*weights))
error = classLabels[i] - h
weights = weights + alpha * error * dataMtrix[i]
return weights
python提示符中输入:
from numpy import *
>>> reload(logRegres)
<module 'logRegres' from 'logRegres.py'>
>>> weights=logRegres.stocGradAscent0(array(dataArr),labelMat)
>>> logRegres.plotBestFit(weights)
运行结果:
这个分类器错分了三分之一的样本,因为每次迭代时系数都会发生剧烈改变。