Android (Linux) led子系统 代码分析

上文提到了总体的一个宏观展示,这次我们细细的分析跟踪下框架代码

Android(Linux) led子系统分析:https://blog.youkuaiyun.com/qq_23327993/article/details/86520216

先看led子系统注册的入口函数

路劲:kernel/msm-3.18/drivers/leds/led-class.c

/*
 * LED Class Core
 *
 * Copyright (C) 2005 John Lenz <lenz@cs.wisc.edu>
 * Copyright (C) 2005-2007 Richard Purdie <rpurdie@openedhand.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
#define  DEBUG
#include <linux/ctype.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/leds.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/timer.h>
#include "leds.h"

static struct class *leds_class;

static ssize_t brightness_show(struct device *dev,
      struct device_attribute *attr, char *buf)
{
   struct led_classdev *led_cdev = dev_get_drvdata(dev);

   /* no lock needed for this */
   led_update_brightness(led_cdev);

   return sprintf(buf, "%u\n", led_cdev->brightness);
}

static ssize_t brightness_store(struct device *dev,
      struct device_attribute *attr, const char *buf, size_t size)
{
   struct led_classdev *led_cdev = dev_get_drvdata(dev);
   unsigned long state;
   ssize_t ret;

   mutex_lock(&led_cdev->led_access);

   if (led_sysfs_is_disabled(led_cdev)) {
      ret = -EBUSY;
      goto unlock;
   }

   ret = kstrtoul(buf, 10, &state);
   if (ret)
      goto unlock;

   led_cdev->usr_brightness_req = state;
   __led_set_brightness(led_cdev, state);

   ret = size;
unlock:
   mutex_unlock(&led_cdev->led_access);
   return ret;
}
static DEVICE_ATTR_RW(brightness);
//static DEVICE_ATTR(brightness, 0666, brightness_show, brightness_store);


static ssize_t max_brightness_show(struct device *dev,
      struct device_attribute *attr, char *buf)
{
   struct led_classdev *led_cdev = dev_get_drvdata(dev);

   return sprintf(buf, "%u\n", led_cdev->max_brightness);
}

static ssize_t max_brightness_store(struct device *dev,
      struct device_attribute *attr, const char *buf, size_t size)
{
   struct led_classdev *led_cdev = dev_get_drvdata(dev);
   unsigned long state;
   ssize_t ret = -EINVAL;

   ret = kstrtoul(buf, 10, &state);
   if (ret)
      return ret;

   led_cdev->max_brightness = state;
   led_set_brightness(led_cdev, led_cdev->usr_brightness_req);

   return size;
}
static DEVICE_ATTR_RW(max_brightness);

#ifdef CONFIG_LEDS_TRIGGERS
static DEVICE_ATTR(trigger, 0644, led_trigger_show, led_trigger_store);
static struct attribute *led_trigger_attrs[] = {
   &dev_attr_trigger.attr,
   NULL,
};
static const struct attribute_group led_trigger_group = {
   .attrs = led_trigger_attrs,
};
#endif

static struct attribute *led_class_attrs[] = {
   &dev_attr_brightness.attr,
   &dev_attr_max_brightness.attr,
   NULL,
};

static const struct attribute_group led_group = {
   .attrs = led_class_attrs,
};

static const struct attribute_group *led_groups[] = {
   &led_group,
#ifdef CONFIG_LEDS_TRIGGERS
   &led_trigger_group,
#endif
   NULL,
};

static void led_timer_function(unsigned long data)
{
   struct led_classdev *led_cdev = (void *)data;
   unsigned long brightness;
   unsigned long delay;

   if (!led_cdev->blink_delay_on || !led_cdev->blink_delay_off) {
      __led_set_brightness(led_cdev, LED_OFF);
      return;
   }

   if (led_cdev->flags & LED_BLINK_ONESHOT_STOP) {
      led_cdev->flags &= ~LED_BLINK_ONESHOT_STOP;
      return;
   }

   brightness = led_get_brightness(led_cdev);
   if (!brightness) {
      /* Time to switch the LED on. */
      brightness = led_cdev->blink_brightness;
      delay = led_cdev->blink_delay_on;
   } else {
      /* Store the current brightness value to be able
       * to restore it when the delay_off period is over.
       */
      led_cdev->blink_brightness = brightness;
      brightness = LED_OFF;
      delay = led_cdev->blink_delay_off;
   }

   __led_set_brightness(led_cdev, brightness);

   /* Return in next iteration if led is in one-shot mode and we are in
    * the final blink state so that the led is toggled each delay_on +
    * delay_off milliseconds in worst case.
    */
   if (led_cdev->flags & LED_BLINK_ONESHOT) {
      if (led_cdev->flags & LED_BLINK_INVERT) {
         if (brightness)
            led_cdev->flags |= LED_BLINK_ONESHOT_STOP;
      } else {
         if (!brightness)
            led_cdev->flags |= LED_BLINK_ONESHOT_STOP;
      }
   }

   mod_timer(&led_cdev->blink_timer, jiffies + msecs_to_jiffies(delay));
}

static void set_brightness_delayed(struct work_struct *ws)
{
   struct led_classdev *led_cdev =
      container_of(ws, struct led_classdev, set_brightness_work);

   led_stop_software_blink(led_cdev);

   __led_set_brightness(led_cdev, led_cdev->delayed_set_value);
}

/**
 * led_classdev_suspend - suspend an led_classdev.
 * @led_cdev: the led_classdev to suspend.
 */
void led_classdev_suspend(struct led_classdev *led_cdev)
{
   led_cdev->flags |= LED_SUSPENDED;
   led_cdev->brightness_set(led_cdev, 0);
}
EXPORT_SYMBOL_GPL(led_classdev_suspend);

/**
 * led_classdev_resume - resume an led_classdev.
 * @led_cdev: the led_classdev to resume.
 */
void led_classdev_resume(struct led_classdev *led_cdev)
{
   led_cdev->brightness_set(led_cdev, led_cdev->brightness);
   led_cdev->flags &= ~LED_SUSPENDED;
}
EXPORT_SYMBOL_GPL(led_classdev_resume);

#ifdef CONFIG_PM_SLEEP
static int led_suspend(struct device *dev)
{
   struct led_classdev *led_cdev = dev_get_drvdata(dev);

   if (led_cdev->flags & LED_CORE_SUSPENDRESUME)
      led_classdev_suspend(led_cdev);

   return 0;
}

static int led_resume(struct device *dev)
{
   struct led_classdev *led_cdev = dev_get_drvdata(dev);

   if (led_cdev->flags & LED_CORE_SUSPENDRESUME)
      led_classdev_resume(led_cdev);

   return 0;
}
#endif

static SIMPLE_DEV_PM_OPS(leds_class_dev_pm_ops, led_suspend, led_resume);

/**
 * led_classdev_register - register a new object of led_classdev class.
 * @parent: The device to register.
 * @led_cdev: the led_classdev structure for this device.
 */
int led_classdev_register(struct device *parent, struct led_classdev *led_cdev)
{
   led_cdev->dev = device_create_with_groups(leds_class, parent, 0,
               led_cdev, led_cdev->groups,
               "%s", led_cdev->name);

    pr_debug("hogo file:%s,func:%s,line:%d\n", __FILE__,__func__,__LINE__);
                    
   if (IS_ERR(led_cdev->dev))
      return PTR_ERR(led_cdev->dev);

#ifdef CONFIG_LEDS_TRIGGERS
   init_rwsem(&led_cdev->trigger_lock);
#endif
   mutex_init(&led_cdev->led_access);
   /* add to the list of leds */
   down_write(&leds_list_lock);
   list_add_tail(&led_cdev->node, &leds_list);
   up_write(&leds_list_lock);

   if (!led_cdev->max_brightness)
      led_cdev->max_brightness = LED_FULL;

   led_update_brightness(led_cdev);

   INIT_WORK(&led_cdev->set_brightness_work, set_brightness_delayed);

   init_timer(&led_cdev->blink_timer);
   led_cdev->blink_timer.function = led_timer_function;
   led_cdev->blink_timer.data = (unsigned long)led_cdev;

#ifdef CONFIG_LEDS_TRIGGERS
   led_trigger_set_default(led_cdev);
#endif

   dev_dbg(parent, "Registered led device: %s\n",
         led_cdev->name);
            
    pr_debug("hogo Registered led device: %s,file:%s,func:%s,line:%d\n",led_cdev->name,__FILE__,__func__,__LINE__);

            


   return 0;
}
EXPORT_SYMBOL_GPL(led_classdev_register);

/**
 * led_classdev_unregister - unregisters a object of led_properties class.
 * @led_cdev: the led device to unregister
 *
 * Unregisters a previously registered via led_classdev_register object.
 */
void led_classdev_unregister(struct led_classdev *led_cdev)
{
#ifdef CONFIG_LEDS_TRIGGERS
   down_write(&led_cdev->trigger_lock);
   if (led_cdev->trigger)
      led_trigger_set(led_cdev, NULL);
   up_write(&led_cdev->trigger_lock);
#endif

   cancel_work_sync(&led_cdev->set_brightness_work);

   /* Stop blinking */
   led_stop_software_blink(led_cdev);
   led_set_brightness(led_cdev, LED_OFF);

   device_unregister(led_cdev->dev);

   down_write(&leds_list_lock);
   list_del(&led_cdev->node);
   up_write(&leds_list_lock);

   mutex_destroy(&led_cdev->led_access);
}
EXPORT_SYMBOL_GPL(led_classdev_unregister);

static int __init leds_init(void)
{
   leds_class = class_create(THIS_MODULE, "leds");
   if (IS_ERR(leds_class))
      return PTR_ERR(leds_class);
   leds_class->pm = &leds_class_dev_pm_ops;
   leds_class->dev_groups = led_groups;
   return 0;
}

static void __exit leds_exit(void)
{
   class_destroy(leds_class);
}

subsys_initcall(leds_init);
module_exit(leds_exit);

MODULE_AUTHOR("John Lenz, Richard Purdie");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("LED Class Interface");

先重点看下模块加载函数leds_init()

这里可以看到init函数中创建了以leds命名的类,该类创建在 /sys/class/ 下 以 “leds” 命名

如图:

如果创建类成功,则对leds_class 中的成员进行填充,那此处的leds_class 是什么呢,可以跟踪去看看

原来是个class 结构体,这个结构体定义在哪呢,我们可以看到leds_class.c 中引入了#include <linux/device.h> 头文件,猜想这个结构体应该就定义在这个头文件里面,跟进去看看

kernel/msm-3.18/include/linux/device.h

/*
 * device.h - generic, centralized driver model
 *
 * Copyright (c) 2001-2003 Patrick Mochel <mochel@osdl.org>
 * Copyright (c) 2004-2009 Greg Kroah-Hartman <gregkh@suse.de>
 * Copyright (c) 2008-2009 Novell Inc.
 *
 * This file is released under the GPLv2
 *
 * See Documentation/driver-model/ for more information.
 */

#ifndef _DEVICE_H_
#define _DEVICE_H_

#include <linux/ioport.h>
#include <linux/kobject.h>
#include <linux/klist.h>
#include <linux/list.h>
#include <linux/lockdep.h>
#include <linux/compiler.h>
#include <linux/types.h>
#include <linux/mutex.h>
#include <linux/pinctrl/devinfo.h>
#include <linux/pm.h>
#include <linux/atomic.h>
#include <linux/ratelimit.h>
#include <linux/uidgid.h>
#include <linux/gfp.h>
#include <asm/device.h>

struct device;
struct device_private;
struct device_driver;
struct driver_private;
struct module;
struct class;
struct subsys_private;
struct bus_type;
struct device_node;
struct iommu_ops;
struct iommu_group;

struct bus_attribute {
   struct attribute   attr;
   ssize_t (*show)(struct bus_type *bus, char *buf);
   ssize_t (*store)(struct bus_type *bus, const char *buf, size_t count);
};

#define BUS_ATTR(_name, _mode, _show, _store)  \
   struct bus_attribute bus_attr_##_name = __ATTR(_name, _mode, _show, _store)
#define BUS_ATTR_RW(_name) \
   struct bus_attribute bus_attr_##_name = __ATTR_RW(_name)
#define BUS_ATTR_RO(_name) \
   struct bus_attribute bus_attr_##_name = __ATTR_RO(_name)

extern int __must_check bus_create_file(struct bus_type *,
               struct bus_attribute *);
extern void bus_remove_file(struct bus_type *, struct bus_attribute *);

/**
 * struct bus_type - The bus type of the device
 *
 * @name:  The name of the bus.
 * @dev_name:  Used for subsystems to enumerate devices like ("foo%u", dev->id).
 * @dev_root:  Default device to use as the parent.
 * @dev_attrs: Default attributes of the devices on the bus.
 * @bus_groups:    Default attributes of the bus.
 * @dev_groups:    Default attributes of the devices on the bus.
 * @drv_groups: Default attributes of the device drivers on the bus.
 * @match: Called, perhaps multiple times, whenever a new device or driver
 *    is added for this bus. It should return a nonzero value if the
 *    given device can be handled by the given driver.
 * @uevent:    Called when a device is added, removed, or a few other things
 *    that generate uevents to add the environment variables.
 * @probe: Called when a new device or driver add to this bus, and callback
 *    the specific driver's probe to initial the matched device.
 * @remove:    Called when a device removed from this bus.
 * @shutdown:  Called at shut-down time to quiesce the device.
 *
 * @online:    Called to put the device back online (after offlining it).
 * @offline:   Called to put the device offline for hot-removal. May fail.
 *
 * @suspend:   Called when a device on this bus wants to go to sleep mode.
 * @resume:    Called to bring a device on this bus out of sleep mode.
 * @pm:       Power management operations of this bus, callback the specific
 *    device driver's pm-ops.
 * @iommu_ops:  IOMMU specific operations for this bus, used to attach IOMMU
 *              driver implementations to a bus and allow the driver to do
 *              bus-specific setup
 * @p:    The private data of the driver core, only the driver core can
 *    touch this.
 * @lock_key:  Lock class key for use by the lock validator
 *
 * A bus is a channel between the processor and one or more devices. For the
 * purposes of the device model, all devices are connected via a bus, even if
 * it is an internal, virtual, "platform" bus. Buses can plug into each other.
 * A USB controller is usually a PCI device, for example. The device model
 * represents the actual connections between buses and the devices they control.
 * A bus is represented by the bus_type structure. It contains the name, the
 * default attributes, the bus' methods, PM operations, and the driver core's
 * private data.
 */
struct bus_type {
   const char    *name;
   const char    *dev_name;
   struct device     *dev_root;
   struct device_attribute    *dev_attrs;    /* use dev_groups instead */
   const struct attribute_group **bus_groups;
   const struct attribute_group **dev_groups;
   const struct attribute_group **drv_groups;

   int (*match)(struct device *dev, struct device_driver *drv);
   int (*uevent)(struct device *dev, struct kobj_uevent_env *env);
   int (*probe)(struct device *dev);
   int (*remove)(struct device *dev);
   void (*shutdown)(struct device *dev);

   int (*online)(struct device *dev);
   int (*offline)(struct device *dev);

   int (*suspend)(struct device *dev, pm_message_t state);
   int (*resume)(struct device *dev);

   const struct dev_pm_ops *pm;

   const struct iommu_ops *iommu_ops;

   struct subsys_private *p;
   struct lock_class_key lock_key;
};

extern int __must_check bus_register(struct bus_type *bus);

extern void bus_unregister(struct bus_type *bus);

extern int __must_check bus_rescan_devices(struct bus_type *bus);

/* iterator helpers for buses */
struct subsys_dev_iter {
   struct klist_iter     ki;
   const struct device_type   *type;
};
void subsys_dev_iter_init(struct subsys_dev_iter *iter,
          struct bus_type *subsys,
          struct device *start,
          const struct device_type *type);
struct device *subsys_dev_iter_next(struct subsys_dev_iter *iter);
void subsys_dev_iter_exit(struct subsys_dev_iter *iter);

int bus_for_each_dev(struct bus_type *bus, struct device *start, void *data,
           int (*fn)(struct device *dev, void *data));
struct device *bus_find_device(struct bus_type *bus, struct device *start,
                void *data,
                int (*match)(struct device *dev, void *data));
struct device *bus_find_device_by_name(struct bus_type *bus,
                   struct device *start,
                   const char *name);
struct device *subsys_find_device_by_id(struct bus_type *bus, unsigned int id,
               struct device *hint);
int bus_for_each_drv(struct bus_type *bus, struct device_driver *start,
           void *data, int (*fn)(struct device_driver *, void *));
void bus_sort_breadthfirst(struct bus_type *bus,
            int (*compare)(const struct device *a,
                 const struct device *b));
/*
 * Bus notifiers: Get notified of addition/removal of devices
 * and binding/unbinding of drivers to devices.
 * In the long run, it should be a replacement for the platform
 * notify hooks.
 */
struct notifier_block;

extern int bus_register_notifier(struct bus_type *bus,
             struct notifier_block *nb);
extern int bus_unregister_notifier(struct bus_type *bus,
               struct notifier_block *nb);

/* All 4 notifers below get called with the target struct device *
 * as an argument. Note that those functions are likely to be called
 * with the device lock held in the core, so be careful.
 */
#define BUS_NOTIFY_ADD_DEVICE     0x00000001 /* device added */
#define BUS_NOTIFY_DEL_DEVICE     0x00000002 /* device to be removed */
#define BUS_NOTIFY_REMOVED_DEVICE  0x00000003 /* device removed */
#define BUS_NOTIFY_BIND_DRIVER    0x00000004 /* driver about to be
                        bound */
#define BUS_NOTIFY_BOUND_DRIVER       0x00000005 /* driver bound to device */
#define BUS_NOTIFY_UNBIND_DRIVER   0x00000006 /* driver about to be
                        unbound */
#define BUS_NOTIFY_UNBOUND_DRIVER  0x00000007 /* driver is unbound
                        from the device */

extern struct kset *bus_get_kset(struct bus_type *bus);
extern struct klist *bus_get_device_klist(struct bus_type *bus);

/**
 * struct device_driver - The basic device driver structure
 * @name:  Name of the device driver.
 * @bus:   The bus which the device of this driver belongs to.
 * @owner: The module owner.
 * @mod_name:  Used for built-in modules.
 * @suppress_bind_attrs: Disables bind/unbind via sysfs.
 * @of_match_table: The open firmware table.
 * @acpi_match_table: The ACPI match table.
 * @probe: Called to query the existence of a specific device,
 *    whether this driver can work with it, and bind the driver
 *    to a specific device.
 * @remove:    Called when the device is removed from the system to
 *    unbind a device from this driver.
 * @shutdown:  Called at shut-down time to quiesce the device.
 * @suspend:   Called to put the device to sleep mode. Usually to a
 *    low power state.
 * @resume:    Called to bring a device from sleep mode.
 * @groups:    Default attributes that get created by the driver core
 *    automatically.
 * @pm:       Power management operations of the device which matched
 *    this driver.
 * @p:    Driver core's private data, no one other than the driver
 *    core can touch this.
 *
 * The device driver-model tracks all of the drivers known to the system.
 * The main reason for this tracking is to enable the driver core to match
 * up drivers with new devices. Once drivers are known objects within the
 * system, however, a number of other things become possible. Device drivers
 * can export information and configuration variables that are independent
 * of any specific device.
 */
struct device_driver {
   const char    *name;
   struct bus_type       *bus;

   struct module     *owner;
   const char    *mod_name; /* used for built-in modules */

   bool suppress_bind_attrs;  /* disables bind/unbind via sysfs */

   const struct of_device_id  *of_match_table;
   const struct acpi_device_id    *acpi_match_table;

   int (*probe) (struct device *dev);
   int (*remove) (struct device *dev);
   void (*shutdown) (struct device *dev);
   int (*suspend) (struct device *dev, pm_message_t state);
   int (*resume) (struct device *dev);
   const struct attribute_group **groups;

   const struct dev_pm_ops *pm;

   struct driver_private *p;
};


extern int __must_check driver_register(struct device_driver *drv);
extern void driver_unregister(struct device_driver *drv);

extern struct device_driver *driver_find(const char *name,
                struct bus_type *bus);
extern int driver_probe_done(void);
extern void wait_for_device_probe(void);


/* sysfs interface for exporting driver attributes */

struct driver_attribute {
   struct attribute attr;
   ssize_t (*show)(struct device_driver *driver, char *buf);
   ssize_t (*store)(struct device_driver *driver, const char *buf,
          size_t count);
};

#define DRIVER_ATTR(_name, _mode, _show, _store) \
   struct driver_attribute driver_attr_##_name = __ATTR(_name, _mode, _show, _store)
#define DRIVER_ATTR_RW(_name) \
   struct driver_attribute driver_attr_##_name = __ATTR_RW(_name)
#define DRIVER_ATTR_RO(_name) \
   struct driver_attribute driver_attr_##_name = __ATTR_RO(_name)
#define DRIVER_ATTR_WO(_name) \
   struct driver_attribute driver_attr_##_name = __ATTR_WO(_name)

extern int __must_check driver_create_file(struct device_driver *driver,
               const struct driver_attribute *attr);
extern void driver_remove_file(struct device_driver *driver,
                const struct driver_attribute *attr);

extern int __must_check driver_for_each_device(struct device_driver *drv,
                      struct device *start,
                      void *data,
                      int (*fn)(struct device *dev,
                      void *));
struct device *driver_find_device(struct device_driver *drv,
              struct device *start, void *data,
              int (*match)(struct device *dev, void *data));

/**
 * struct subsys_interface - interfaces to device functions
 * @name:       name of the device function
 * @subsys:     subsytem of the devices to attach to
 * @node:       the list of functions registered at the subsystem
 * @add_dev:    device hookup to device function handler
 * @remove_dev: device hookup to device function handler
 *
 * Simple interfaces attached to a subsystem. Multiple interfaces can
 * attach to a subsystem and its devices. Unlike drivers, they do not
 * exclusively claim or control devices. Interfaces usually represent
 * a specific functionality of a subsystem/class of devices.
 */
struct subsys_interface {
   const char *name;
   struct bus_type *subsys;
   struct list_head node;
   int (*add_dev)(struct device *dev, struct subsys_interface *sif);
   int (*remove_dev)(struct device *dev, struct subsys_interface *sif);
};

int subsys_interface_register(struct subsys_interface *sif);
void subsys_interface_unregister(struct subsys_interface *sif);

int subsys_system_register(struct bus_type *subsys,
            const struct attribute_group **groups);
int subsys_virtual_register(struct bus_type *subsys,
             const struct attribute_group **groups);

/**
 * struct class - device classes
 * @name:  Name of the class.
 * @owner: The module owner.
 * @class_attrs: Default attributes of this class.
 * @dev_groups:    Default attributes of the devices that belong to the class.
 * @dev_kobj:  The kobject that represents this class and links it into the hierarchy.
 * @dev_uevent:    Called when a device is added, removed from this class, or a
 *    few other things that generate uevents to add the environment
 *    variables.
 * @devnode:   Callback to provide the devtmpfs.
 * @class_release: Called to release this class.
 * @dev_release: Called to release the device.
 * @suspend:   Used to put the device to sleep mode, usually to a low power
 *    state.
 * @resume:    Used to bring the device from the sleep mode.
 * @ns_type:   Callbacks so sysfs can detemine namespaces.
 * @namespace: Namespace of the device belongs to this class.
 * @pm:       The default device power management operations of this class.
 * @p:    The private data of the driver core, no one other than the
 *    driver core can touch this.
 *
 * A class is a higher-level view of a device that abstracts out low-level
 * implementation details. Drivers may see a SCSI disk or an ATA disk, but,
 * at the class level, they are all simply disks. Classes allow user space
 * to work with devices based on what they do, rather than how they are
 * connected or how they work.
 */
struct class {
   const char    *name;
   struct module     *owner;

   struct class_attribute    *class_attrs;
   const struct attribute_group   **dev_groups;
   struct kobject       *dev_kobj;

   int (*dev_uevent)(struct device *dev, struct kobj_uevent_env *env);
   char *(*devnode)(struct device *dev, umode_t *mode);

   void (*class_release)(struct class *class);
   void (*dev_release)(struct device *dev);

   int (*suspend)(struct device *dev, pm_message_t state);
   int (*resume)(struct device *dev);

   const struct kobj_ns_type_operations *ns_type;
   const void *(*namespace)(struct device *dev);

   const struct dev_pm_ops *pm;

   struct subsys_private *p;
};

struct class_dev_iter {
   struct klist_iter     ki;
   const struct device_type   *type;
};

extern struct kobject *sysfs_dev_block_kobj;
extern struct kobject *sysfs_dev_char_kobj;
extern int __must_check __class_register(struct class *class,
                struct lock_class_key *key);
extern void class_unregister(struct class *class);

/* This is a #define to keep the compiler from merging different
 * instances of the __key variable */
#define class_register(class)        \
({                \
   static struct lock_class_key __key;    \
   __class_register(class, &__key);   \
})

struct class_compat;
struct class_compat *class_compat_register(const char *name);
void class_compat_unregister(struct class_compat *cls);
int class_compat_create_link(struct class_compat *cls, struct device *dev,
              struct device *device_link);
void class_compat_remove_link(struct class_compat *cls, struct device *dev,
               struct device *device_link);

extern void class_dev_iter_init(struct class_dev_iter *iter,
            struct class *class,
            struct device *start,
            const struct device_type *type);
extern struct device *class_dev_iter_next(struct class_dev_iter *iter);
extern void class_dev_iter_exit(struct class_dev_iter *iter);

extern int class_for_each_device(struct class *class, struct device *start,
             void *data,
             int (*fn)(struct device *dev, void *data));
extern struct device *class_find_device(struct class *class,
               struct device *start, const void *data,
               int (*match)(struct device *, const void *));

struct class_attribute {
   struct attribute attr;
   ssize_t (*show)(struct class *class, struct class_attribute *attr,
         char *buf);
   ssize_t (*store)(struct class *class, struct class_attribute *attr,
         const char *buf, size_t count);
};

#define CLASS_ATTR(_name, _mode, _show, _store) \
   struct class_attribute class_attr_##_name = __ATTR(_name, _mode, _show, _store)
#define CLASS_ATTR_RW(_name) \
   struct class_attribute class_attr_##_name = __ATTR_RW(_name)
#define CLASS_ATTR_RO(_name) \
   struct class_attribute class_attr_##_name = __ATTR_RO(_name)

extern int __must_check class_create_file_ns(struct class *class,
                    const struct class_attribute *attr,
                    const void *ns);
extern void class_remove_file_ns(struct class *class,
             const struct class_attribute *attr,
             const void *ns);

static inline int __must_check class_create_file(struct class *class,
               const struct class_attribute *attr)
{
   return class_create_file_ns(class, attr, NULL);
}

static inline void class_remove_file(struct class *class,
                 const struct class_attribute *attr)
{
   return class_remove_file_ns(class, attr, NULL);
}

/* Simple class attribute that is just a static string */
struct class_attribute_string {
   struct class_attribute attr;
   char *str;
};

/* Currently read-only only */
#define _CLASS_ATTR_STRING(_name, _mode, _str) \
   { __ATTR(_name, _mode, show_class_attr_string, NULL), _str }
#define CLASS_ATTR_STRING(_name, _mode, _str) \
   struct class_attribute_string class_attr_##_name = \
      _CLASS_ATTR_STRING(_name, _mode, _str)

extern ssize_t show_class_attr_string(struct class *class, struct class_attribute *attr,
                        char *buf);

struct class_interface {
   struct list_head   node;
   struct class      *class;

   int (*add_dev)    (struct device *, struct class_interface *);
   void (*remove_dev) (struct device *, struct class_interface *);
};

extern int __must_check class_interface_register(struct class_interface *);
extern void class_interface_unregister(struct class_interface *);

extern struct class * __must_check __class_create(struct module *owner,
                    const char *name,
                    struct lock_class_key *key);
extern void class_destroy(struct class *cls);

/* This is a #define to keep the compiler from merging different
 * instances of the __key variable */
#define class_create(owner, name)     \
({                \
   static struct lock_class_key __key;    \
   __class_create(owner, name, &__key);   \
})

/*
 * The type of device, "struct device" is embedded in. A class
 * or bus can contain devices of different types
 * like "partitions" and "disks", "mouse" and "event".
 * This identifies the device type and carries type-specific
 * information, equivalent to the kobj_type of a kobject.
 * If "name" is specified, the uevent will contain it in
 * the DEVTYPE variable.
 */
struct device_type {
   const char *name;
   const struct attribute_group **groups;
   int (*uevent)(struct device *dev, struct kobj_uevent_env *env);
   char *(*devnode)(struct device *dev, umode_t *mode,
          kuid_t *uid, kgid_t *gid);
   void (*release)(struct device *dev);

   const struct dev_pm_ops *pm;
};

/* interface for exporting device attributes */
struct device_attribute {
   struct attribute   attr;
   ssize_t (*show)(struct device *dev, struct device_attribute *attr,
         char *buf);
   ssize_t (*store)(struct device *dev, struct device_attribute *attr,
          const char *buf, size_t count);
};

struct dev_ext_attribute {
   struct device_attribute attr;
   void *var;
};

ssize_t device_show_ulong(struct device *dev, struct device_attribute *attr,
           char *buf);
ssize_t device_store_ulong(struct device *dev, struct device_attribute *attr,
            const char *buf, size_t count);
ssize_t device_show_int(struct device *dev, struct device_attribute *attr,
         char *buf);
ssize_t device_store_int(struct device *dev, struct device_attribute *attr,
          const char *buf, size_t count);
ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
         char *buf);
ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
          const char *buf, size_t count);

#define DEVICE_ATTR(_name, _mode, _show, _store) \
   struct device_attribute dev_attr_##_name = __ATTR(_name, _mode, _show, _store)
#define DEVICE_ATTR_RW(_name) \
   struct device_attribute dev_attr_##_name = __ATTR_RW(_name)
#define DEVICE_ATTR_RO(_name) \
   struct device_attribute dev_attr_##_name = __ATTR_RO(_name)
#define DEVICE_ATTR_WO(_name) \
   struct device_attribute dev_attr_##_name = __ATTR_WO(_name)
#define DEVICE_ULONG_ATTR(_name, _mode, _var) \
   struct dev_ext_attribute dev_attr_##_name = \
      { __ATTR(_name, _mode, device_show_ulong, device_store_ulong), &(_var) }
#define DEVICE_INT_ATTR(_name, _mode, _var) \
   struct dev_ext_attribute dev_attr_##_name = \
      { __ATTR(_name, _mode, device_show_int, device_store_int), &(_var) }
#define DEVICE_BOOL_ATTR(_name, _mode, _var) \
   struct dev_ext_attribute dev_attr_##_name = \
      { __ATTR(_name, _mode, device_show_bool, device_store_bool), &(_var) }
#define DEVICE_ATTR_IGNORE_LOCKDEP(_name, _mode, _show, _store) \
   struct device_attribute dev_attr_##_name =    \
      __ATTR_IGNORE_LOCKDEP(_name, _mode, _show, _store)

extern int device_create_file(struct device *device,
               const struct device_attribute *entry);
extern void device_remove_file(struct device *dev,
                const struct device_attribute *attr);
extern bool device_remove_file_self(struct device *dev,
                const struct device_attribute *attr);
extern int __must_check device_create_bin_file(struct device *dev,
               const struct bin_attribute *attr);
extern void device_remove_bin_file(struct device *dev,
               const struct bin_attribute *attr);

/* device resource management */
typedef void (*dr_release_t)(struct device *dev, void *res);
typedef int (*dr_match_t)(struct device *dev, void *res, void *match_data);

#ifdef CONFIG_DEBUG_DEVRES
extern void *__devres_alloc(dr_release_t release, size_t size, gfp_t gfp,
              const char *name);
#define devres_alloc(release, size, gfp) \
   __devres_alloc(release, size, gfp, #release)
#else
extern void *devres_alloc(dr_release_t release, size_t size, gfp_t gfp);
#endif
extern void devres_for_each_res(struct device *dev, dr_release_t release,
            dr_match_t match, void *match_data,
            void (*fn)(struct device *, void *, void *),
            void *data);
extern void devres_free(void *res);
extern void devres_add(struct device *dev, void *res);
extern void *devres_find(struct device *dev, dr_release_t release,
          dr_match_t match, void *match_data);
extern void *devres_get(struct device *dev, void *new_res,
         dr_match_t match, void *match_data);
extern void *devres_remove(struct device *dev, dr_release_t release,
            dr_match_t match, void *match_data);
extern int devres_destroy(struct device *dev, dr_release_t release,
           dr_match_t match, void *match_data);
extern int devres_release(struct device *dev, dr_release_t release,
           dr_match_t match, void *match_data);

/* devres group */
extern void * __must_check devres_open_group(struct device *dev, void *id,
                    gfp_t gfp);
extern void devres_close_group(struct device *dev, void *id);
extern void devres_remove_group(struct device *dev, void *id);
extern int devres_release_group(struct device *dev, void *id);

/* managed devm_k.alloc/kfree for device drivers */
extern void *devm_kmalloc(struct device *dev, size_t size, gfp_t gfp);
extern char *devm_kvasprintf(struct device *dev, gfp_t gfp, const char *fmt,
              va_list ap);
extern __printf(3, 4)
char *devm_kasprintf(struct device *dev, gfp_t gfp, const char *fmt, ...);
static inline void *devm_kzalloc(struct device *dev, size_t size, gfp_t gfp)
{
   return devm_kmalloc(dev, size, gfp | __GFP_ZERO);
}
static inline void *devm_kmalloc_array(struct device *dev,
                   size_t n, size_t size, gfp_t flags)
{
   if (size != 0 && n > SIZE_MAX / size)
      return NULL;
   return devm_kmalloc(dev, n * size, flags);
}
static inline void *devm_kcalloc(struct device *dev,
             size_t n, size_t size, gfp_t flags)
{
   return devm_kmalloc_array(dev, n, size, flags | __GFP_ZERO);
}
extern void devm_kfree(struct device *dev, void *p);
extern char *devm_kstrdup(struct device *dev, const char *s, gfp_t gfp);
extern void *devm_kmemdup(struct device *dev, const void *src, size_t len,
           gfp_t gfp);

extern unsigned long devm_get_free_pages(struct device *dev,
                gfp_t gfp_mask, unsigned int order);
extern void devm_free_pages(struct device *dev, unsigned long addr);

void __iomem *devm_ioremap_resource(struct device *dev, struct resource *res);

/* allows to add/remove a custom action to devres stack */
int devm_add_action(struct device *dev, void (*action)(void *), void *data);
void devm_remove_action(struct device *dev, void (*action)(void *), void *data);

struct device_dma_parameters {
   /*
    * a low level driver may set these to teach IOMMU code about
    * sg limitations.
    */
   unsigned int max_segment_size;
   unsigned long segment_boundary_mask;
};

struct acpi_device;

struct acpi_dev_node {
#ifdef CONFIG_ACPI
   struct acpi_device *companion;
#endif
};

/**
 * struct device - The basic device structure
 * @parent:    The device's "parent" device, the device to which it is attached.
 *        In most cases, a parent device is some sort of bus or host
 *        controller. If parent is NULL, the device, is a top-level device,
 *        which is not usually what you want.
 * @p:    Holds the private data of the driver core portions of the device.
 *        See the comment of the struct device_private for detail.
 * @kobj:  A top-level, abstract class from which other classes are derived.
 * @init_name: Initial name of the device.
 * @type:  The type of device.
 *        This identifies the device type and carries type-specific
 *        information.
 * @mutex: Mutex to synchronize calls to its driver.
 * @bus:   Type of bus device is on.
 * @driver:    Which driver has allocated this
 * @platform_data: Platform data specific to the device.
 *        Example: For devices on custom boards, as typical of embedded
 *        and SOC based hardware, Linux often uses platform_data to point
 *        to board-specific structures describing devices and how they
 *        are wired.  That can include what ports are available, chip
 *        variants, which GPIO pins act in what additional roles, and so
 *        on.  This shrinks the "Board Support Packages" (BSPs) and
 *        minimizes board-specific #ifdefs in drivers.
 * @driver_data: Private pointer for driver specific info.
 * @power: For device power management.
 *        See Documentation/power/devices.txt for details.
 * @pm_domain: Provide callbacks that are executed during system suspend,
 *        hibernation, system resume and during runtime PM transitions
 *        along with subsystem-level and driver-level callbacks.
 * @pins:  For device pin management.
 *    See Documentation/pinctrl.txt for details.
 * @msi_domain: The generic MSI domain this device is using.
 * @numa_node: NUMA node this device is close to.
 * @dma_mask:  Dma mask (if dma'ble device).
 * @coherent_dma_mask: Like dma_mask, but for alloc_coherent mapping as not all
 *        hardware supports 64-bit addresses for consistent allocations
 *        such descriptors.
 * @dma_pfn_offset: offset of DMA memory range relatively of RAM
 * @dma_parms: A low level driver may set these to teach IOMMU code about
 *        segment limitations.
 * @dma_pools: Dma pools (if dma'ble device).
 * @dma_mem:   Internal for coherent mem override.
 * @cma_area:  Contiguous memory area for dma allocations
 * @archdata:  For arch-specific additions.
 * @of_node:   Associated device tree node.
 * @acpi_node: Associated ACPI device node.
 * @devt:  For creating the sysfs "dev".
 * @id:       device instance
 * @devres_lock: Spinlock to protect the resource of the device.
 * @devres_head: The resources list of the device.
 * @knode_class: The node used to add the device to the class list.
 * @class: The class of the device.
 * @groups:    Optional attribute groups.
 * @release:   Callback to free the device after all references have
 *        gone away. This should be set by the allocator of the
 *        device (i.e. the bus driver that discovered the device).
 * @iommu_group: IOMMU group the device belongs to.
 *
 * @offline_disabled: If set, the device is permanently online.
 * @offline:   Set after successful invocation of bus type's .offline().
 *
 * At the lowest level, every device in a Linux system is represented by an
 * instance of struct device. The device structure contains the information
 * that the device model core needs to model the system. Most subsystems,
 * however, track additional information about the devices they host. As a
 * result, it is rare for devices to be represented by bare device structures;
 * instead, that structure, like kobject structures, is usually embedded within
 * a higher-level representation of the device.
 */
struct device {
   struct device     *parent;

   struct device_private  *p;

   struct kobject kobj;
   const char    *init_name; /* initial name of the device */
   const struct device_type *type;

   struct mutex      mutex; /* mutex to synchronize calls to
                * its driver.
                */

   struct bus_type    *bus;     /* type of bus device is on */
   struct device_driver *driver;  /* which driver has allocated this
                  device */
   void      *platform_data;    /* Platform specific data, device
                  core doesn't touch it */
   void      *driver_data;  /* Driver data, set and get with
                  dev_set/get_drvdata */
   struct dev_pm_info power;
   struct dev_pm_domain   *pm_domain;

#ifdef CONFIG_GENERIC_MSI_IRQ_DOMAIN
   struct irq_domain  *msi_domain;
#endif
#ifdef CONFIG_PINCTRL
   struct dev_pin_info    *pins;
#endif

#ifdef CONFIG_NUMA
   int       numa_node; /* NUMA node this device is close to */
#endif
   u64       *dma_mask; /* dma mask (if dma'able device) */
   u64       coherent_dma_mask;/* Like dma_mask, but for
                    alloc_coherent mappings as
                    not all hardware supports
                    64 bit addresses for consistent
                    allocations such descriptors. */
   unsigned long  dma_pfn_offset;

   struct device_dma_parameters *dma_parms;

   struct list_head   dma_pools; /* dma pools (if dma'ble) */

   struct dma_coherent_mem    *dma_mem; /* internal for coherent mem
                    override */
#ifdef CONFIG_DMA_CMA
   struct cma *cma_area;     /* contiguous memory area for dma
                  allocations */
#endif
   struct removed_region *removed_mem;
   /* arch specific additions */
   struct dev_archdata    archdata;

   struct device_node *of_node; /* associated device tree node */
   struct acpi_dev_node   acpi_node; /* associated ACPI device node */

   dev_t        devt;  /* dev_t, creates the sysfs "dev" */
   u32          id;    /* device instance */

   spinlock_t    devres_lock;
   struct list_head   devres_head;

   struct klist_node  knode_class;
   struct class      *class;
   const struct attribute_group **groups; /* optional groups */

   void   (*release)(struct device *dev);
   struct iommu_group *iommu_group;

   bool         offline_disabled:1;
   bool         offline:1;
};

static inline struct device *kobj_to_dev(struct kobject *kobj)
{
   return container_of(kobj, struct device, kobj);
}

/* Get the wakeup routines, which depend on struct device */
#include <linux/pm_wakeup.h>

static inline const char *dev_name(const struct device *dev)
{
   /* Use the init name until the kobject becomes available */
   if (dev->init_name)
      return dev->init_name;

   return kobject_name(&dev->kobj);
}

extern __printf(2, 3)
int dev_set_name(struct device *dev, const char *name, ...);

#ifdef CONFIG_NUMA
static inline int dev_to_node(struct device *dev)
{
   return dev->numa_node;
}
static inline void set_dev_node(struct device *dev, int node)
{
   dev->numa_node = node;
}
#else
static inline int dev_to_node(struct device *dev)
{
   return -1;
}
static inline void set_dev_node(struct device *dev, int node)
{
}
#endif

static inline struct irq_domain *dev_get_msi_domain(const struct device *dev)
{
#ifdef CONFIG_GENERIC_MSI_IRQ_DOMAIN
   return dev->msi_domain;
#else
   return NULL;
#endif
}

static inline void dev_set_msi_domain(struct device *dev, struct irq_domain *d)
{
#ifdef CONFIG_GENERIC_MSI_IRQ_DOMAIN
   dev->msi_domain = d;
#endif
}

static inline void *dev_get_drvdata(const struct device *dev)
{
   return dev->driver_data;
}

static inline void dev_set_drvdata(struct device *dev, void *data)
{
   dev->driver_data = data;
}

static inline struct pm_subsys_data *dev_to_psd(struct device *dev)
{
   return dev ? dev->power.subsys_data : NULL;
}

static inline unsigned int dev_get_uevent_suppress(const struct device *dev)
{
   return dev->kobj.uevent_suppress;
}

static inline void dev_set_uevent_suppress(struct device *dev, int val)
{
   dev->kobj.uevent_suppress = val;
}

static inline int device_is_registered(struct device *dev)
{
   return dev->kobj.state_in_sysfs;
}

static inline void device_enable_async_suspend(struct device *dev)
{
   if (!dev->power.is_prepared)
      dev->power.async_suspend = true;
}

static inline void device_disable_async_suspend(struct device *dev)
{
   if (!dev->power.is_prepared)
      dev->power.async_suspend = false;
}

static inline bool device_async_suspend_enabled(struct device *dev)
{
   return !!dev->power.async_suspend;
}

static inline void pm_suspend_ignore_children(struct device *dev, bool enable)
{
   dev->power.ignore_children = enable;
}

static inline void dev_pm_syscore_device(struct device *dev, bool val)
{
#ifdef CONFIG_PM_SLEEP
   dev->power.syscore = val;
#endif
}

static inline void device_lock(struct device *dev)
{
   mutex_lock(&dev->mutex);
}

static inline int device_trylock(struct device *dev)
{
   return mutex_trylock(&dev->mutex);
}

static inline void device_unlock(struct device *dev)
{
   mutex_unlock(&dev->mutex);
}

void driver_init(void);

/*
 * High level routines for use by the bus drivers
 */
extern int __must_check device_register(struct device *dev);
extern void device_unregister(struct device *dev);
extern void device_initialize(struct device *dev);
extern int __must_check device_add(struct device *dev);
extern void device_del(struct device *dev);
extern int device_for_each_child(struct device *dev, void *data,
           int (*fn)(struct device *dev, void *data));
extern struct device *device_find_child(struct device *dev, void *data,
            int (*match)(struct device *dev, void *data));
extern int device_rename(struct device *dev, const char *new_name);
extern int device_move(struct device *dev, struct device *new_parent,
             enum dpm_order dpm_order);
extern const char *device_get_devnode(struct device *dev,
                  umode_t *mode, kuid_t *uid, kgid_t *gid,
                  const char **tmp);

static inline bool device_supports_offline(struct device *dev)
{
   return dev->bus && dev->bus->offline && dev->bus->online;
}

extern void lock_device_hotplug(void);
extern void unlock_device_hotplug(void);
extern int lock_device_hotplug_sysfs(void);
extern int device_offline(struct device *dev);
extern int device_online(struct device *dev);
/*
 * Root device objects for grouping under /sys/devices
 */
extern struct device *__root_device_register(const char *name,
                    struct module *owner);

/* This is a macro to avoid include problems with THIS_MODULE */
#define root_device_register(name) \
   __root_device_register(name, THIS_MODULE)

extern void root_device_unregister(struct device *root);

static inline void *dev_get_platdata(const struct device *dev)
{
   return dev->platform_data;
}

/*
 * Manual binding of a device to driver. See drivers/base/bus.c
 * for information on use.
 */
extern int __must_check device_bind_driver(struct device *dev);
extern void device_release_driver(struct device *dev);
extern int  __must_check device_attach(struct device *dev);
extern int __must_check driver_attach(struct device_driver *drv);
extern int __must_check device_reprobe(struct device *dev);

/*
 * Easy functions for dynamically creating devices on the fly
 */
extern struct device *device_create_vargs(struct class *cls,
                 struct device *parent,
                 dev_t devt,
                 void *drvdata,
                 const char *fmt,
                 va_list vargs);
extern __printf(5, 6)
struct device *device_create(struct class *cls, struct device *parent,
              dev_t devt, void *drvdata,
              const char *fmt, ...);
extern __printf(6, 7)
struct device *device_create_with_groups(struct class *cls,
              struct device *parent, dev_t devt, void *drvdata,
              const struct attribute_group **groups,
              const char *fmt, ...);
extern void device_destroy(struct class *cls, dev_t devt);

/*
 * Platform "fixup" functions - allow the platform to have their say
 * about devices and actions that the general device layer doesn't
 * know about.
 */
/* Notify platform of device discovery */
extern int (*platform_notify)(struct device *dev);

extern int (*platform_notify_remove)(struct device *dev);


/*
 * get_device - atomically increment the reference count for the device.
 *
 */
extern struct device *get_device(struct device *dev);
extern void put_device(struct device *dev);

#ifdef CONFIG_DEVTMPFS
extern int devtmpfs_create_node(struct device *dev);
extern int devtmpfs_delete_node(struct device *dev);
extern int devtmpfs_mount(const char *mntdir);
#else
static inline int devtmpfs_create_node(struct device *dev) { return 0; }
static inline int devtmpfs_delete_node(struct device *dev) { return 0; }
static inline int devtmpfs_mount(const char *mountpoint) { return 0; }
#endif

/* drivers/base/power/shutdown.c */
extern void device_shutdown(void);

/* debugging and troubleshooting/diagnostic helpers. */
extern const char *dev_driver_string(const struct device *dev);


#ifdef CONFIG_PRINTK

extern __printf(3, 0)
int dev_vprintk_emit(int level, const struct device *dev,
           const char *fmt, va_list args);
extern __printf(3, 4)
int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...);

extern __printf(3, 4)
int dev_printk(const char *level, const struct device *dev,
          const char *fmt, ...);
extern __printf(2, 3)
int dev_emerg(const struct device *dev, const char *fmt, ...);
extern __printf(2, 3)
int dev_alert(const struct device *dev, const char *fmt, ...);
extern __printf(2, 3)
int dev_crit(const struct device *dev, const char *fmt, ...);
extern __printf(2, 3)
int dev_err(const struct device *dev, const char *fmt, ...);
extern __printf(2, 3)
int dev_warn(const struct device *dev, const char *fmt, ...);
extern __printf(2, 3)
int dev_notice(const struct device *dev, const char *fmt, ...);
extern __printf(2, 3)
int _dev_info(const struct device *dev, const char *fmt, ...);

#else

static inline __printf(3, 0)
int dev_vprintk_emit(int level, const struct device *dev,
           const char *fmt, va_list args)
{ return 0; }
static inline __printf(3, 4)
int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
{ return 0; }

static inline int __dev_printk(const char *level, const struct device *dev,
                struct va_format *vaf)
{ return 0; }
static inline __printf(3, 4)
int dev_printk(const char *level, const struct device *dev,
          const char *fmt, ...)
{ return 0; }

static inline __printf(2, 3)
int dev_emerg(const struct device *dev, const char *fmt, ...)
{ return 0; }
static inline __printf(2, 3)
int dev_crit(const struct device *dev, const char *fmt, ...)
{ return 0; }
static inline __printf(2, 3)
int dev_alert(const struct device *dev, const char *fmt, ...)
{ return 0; }
static inline __printf(2, 3)
int dev_err(const struct device *dev, const char *fmt, ...)
{ return 0; }
static inline __printf(2, 3)
int dev_warn(const struct device *dev, const char *fmt, ...)
{ return 0; }
static inline __printf(2, 3)
int dev_notice(const struct device *dev, const char *fmt, ...)
{ return 0; }
static inline __printf(2, 3)
int _dev_info(const struct device *dev, const char *fmt, ...)
{ return 0; }

#endif

/*
 * Stupid hackaround for existing uses of non-printk uses dev_info
 *
 * Note that the definition of dev_info below is actually _dev_info
 * and a macro is used to avoid redefining dev_info
 */

#define dev_info(dev, fmt, arg...) _dev_info(dev, fmt, ##arg)

#if defined(CONFIG_DYNAMIC_DEBUG)
#define dev_dbg(dev, format, ...)          \
do {                       \
   dynamic_dev_dbg(dev, format, ##__VA_ARGS__); \
} while (0)
#elif defined(DEBUG)
#define dev_dbg(dev, format, arg...)      \
   dev_printk(KERN_DEBUG, dev, format, ##arg)
#else
#define dev_dbg(dev, format, arg...)            \
({                      \
   if (0)                   \
      dev_printk(KERN_DEBUG, dev, format, ##arg);    \
   0;                   \
})
#endif

#define dev_level_ratelimited(dev_level, dev, fmt, ...)          \
do {                           \
   static DEFINE_RATELIMIT_STATE(_rs,          \
                  DEFAULT_RATELIMIT_INTERVAL,  \
                  DEFAULT_RATELIMIT_BURST);       \
   if (__ratelimit(&_rs))                \
      dev_level(dev, fmt, ##__VA_ARGS__);          \
} while (0)

#define dev_emerg_ratelimited(dev, fmt, ...)            \
   dev_level_ratelimited(dev_emerg, dev, fmt, ##__VA_ARGS__)
#define dev_alert_ratelimited(dev, fmt, ...)            \
   dev_level_ratelimited(dev_alert, dev, fmt, ##__VA_ARGS__)
#define dev_crit_ratelimited(dev, fmt, ...)             \
   dev_level_ratelimited(dev_crit, dev, fmt, ##__VA_ARGS__)
#define dev_err_ratelimited(dev, fmt, ...)          \
   dev_level_ratelimited(dev_err, dev, fmt, ##__VA_ARGS__)
#define dev_warn_ratelimited(dev, fmt, ...)             \
   dev_level_ratelimited(dev_warn, dev, fmt, ##__VA_ARGS__)
#define dev_notice_ratelimited(dev, fmt, ...)           \
   dev_level_ratelimited(dev_notice, dev, fmt, ##__VA_ARGS__)
#define dev_info_ratelimited(dev, fmt, ...)             \
   dev_level_ratelimited(dev_info, dev, fmt, ##__VA_ARGS__)
#if defined(CONFIG_DYNAMIC_DEBUG)
/* descriptor check is first to prevent flooding with "callbacks suppressed" */
#define dev_dbg_ratelimited(dev, fmt, ...)          \
do {                           \
   static DEFINE_RATELIMIT_STATE(_rs,          \
                  DEFAULT_RATELIMIT_INTERVAL,  \
                  DEFAULT_RATELIMIT_BURST);       \
   DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, fmt);          \
   if (unlikely(descriptor.flags & _DPRINTK_FLAGS_PRINT) &&   \
       __ratelimit(&_rs))                \
      __dynamic_dev_dbg(&descriptor, dev, fmt,      \
              ##__VA_ARGS__);        \
} while (0)
#elif defined(DEBUG)
#define dev_dbg_ratelimited(dev, fmt, ...)          \
do {                           \
   static DEFINE_RATELIMIT_STATE(_rs,          \
                  DEFAULT_RATELIMIT_INTERVAL,  \
                  DEFAULT_RATELIMIT_BURST);       \
   if (__ratelimit(&_rs))                \
      dev_printk(KERN_DEBUG, dev, fmt, ##__VA_ARGS__);   \
} while (0)
#else
#define dev_dbg_ratelimited(dev, fmt, ...)       \
   no_printk(KERN_DEBUG pr_fmt(fmt), ##__VA_ARGS__)
#endif

#ifdef VERBOSE_DEBUG
#define dev_vdbg   dev_dbg
#else
#define dev_vdbg(dev, format, arg...)           \
({                      \
   if (0)                   \
      dev_printk(KERN_DEBUG, dev, format, ##arg);    \
   0;                   \
})
#endif

/*
 * dev_WARN*() acts like dev_printk(), but with the key difference of
 * using WARN/WARN_ONCE to include file/line information and a backtrace.
 */
#define dev_WARN(dev, format, arg...) \
   WARN(1, "%s %s: " format, dev_driver_string(dev), dev_name(dev), ## arg);

#define dev_WARN_ONCE(dev, condition, format, arg...) \
   WARN_ONCE(condition, "%s %s: " format, \
         dev_driver_string(dev), dev_name(dev), ## arg)

/* Create alias, so I can be autoloaded. */
#define MODULE_ALIAS_CHARDEV(major,minor) \
   MODULE_ALIAS("char-major-" __stringify(major) "-" __stringify(minor))
#define MODULE_ALIAS_CHARDEV_MAJOR(major) \
   MODULE_ALIAS("char-major-" __stringify(major) "-*")

#ifdef CONFIG_SYSFS_DEPRECATED
extern long sysfs_deprecated;
#else
#define sysfs_deprecated 0
#endif

/**
 * module_driver() - Helper macro for drivers that don't do anything
 * special in module init/exit. This eliminates a lot of boilerplate.
 * Each module may only use this macro once, and calling it replaces
 * module_init() and module_exit().
 *
 * @__driver: driver name
 * @__register: register function for this driver type
 * @__unregister: unregister function for this driver type
 * @...: Additional arguments to be passed to __register and __unregister.
 *
 * Use this macro to construct bus specific macros for registering
 * drivers, and do not use it on its own.
 */
#define module_driver(__driver, __register, __unregister, ...) \
static int __init __driver##_init(void) \
{ \
   return __register(&(__driver) , ##__VA_ARGS__); \
} \
module_init(__driver##_init); \
static void __exit __driver##_exit(void) \
{ \
   __unregister(&(__driver) , ##__VA_ARGS__); \
} \
module_exit(__driver##_exit);

#endif /* _DEVICE_H_ */

找到struct class 结构体定义的地方

这里可以看到这个结构体里有许多成员,有些成员本身也是结构体类型,这里就不再详细赘述了,感兴趣的朋友可以慢慢跟进去阅读。我们回到上面的leds_class.c,刚刚讲leds_init(),先看看看该C文件里面的其他函数

看到这里,发现该C文件中有许多被static修饰的函数,这些函数都是干嘛用的呢?有没有人回想到前面讲过的leds目录结构,

然后结合到C文件里的这种类型的语句,是否会想到什么?

static DEVICE_ATTR(trigger, 0644, led_trigger_show, led_trigger_store);

哦,应该是对应用户操作文件的函数吧,这里解释下这种语句的意思,看起来应该很好理解,

参数1:leds目录下文件名为trigger的文件

参数2:0644 文件操作权限

参数3,4:对应操作文件联系到的函数 ,这里在详细说明下 show(显示 cat) store(设置 echo)

那去验证下吧,经过cat echo 的操作

当博主先后对max_brightness文件进行cat -> echo ->  cat 操作,效果如图

 这样是不是证明我们刚刚的推断是正确的,nice

到目前为止,leds_class.c中还有一个很重要的最外函数led_classdev_register,这个函数可以注册一个led实例,为了让外部使用这个函数,在/kernel/msm-3.18/include/linux/leds.h中,特意使用了extern 修饰该函数

extern int led_classdev_register(struct device *parent,
             struct led_classdev *led_cdev);

讲到这,函数内有两个参数:

参数1:struct device,定义在/kernel/msm-3.18/include/linux/devices.h中,这里不做详细赘述

参数2:struct led_classdev,定义在/kernel/msm-3.18/include/linux/leds.h中,这里简单对该结构体作下分析。

struct led_classdev {
   const char    *name;                          //名字
   enum led_brightness     brightness;                //亮度
   enum led_brightness     max_brightness;            //最大亮度
   enum led_brightness     usr_brightness_req;
   int           flags;                             //标志  只支持 LED_SUSPENDED LED_CORE_SUSPENDRESUME LED_BLINK_ONESHOT等

   /* Lower 16 bits reflect status */
#define LED_SUSPENDED     (1 << 0)
   /* Upper 16 bits reflect control information */
#define LED_CORE_SUSPENDRESUME (1 << 16)
#define LED_BLINK_ONESHOT  (1 << 17)
#define LED_BLINK_ONESHOT_STOP (1 << 18)
#define LED_BLINK_INVERT   (1 << 19)
#define LED_SYSFS_DISABLE  (1 << 20)

   /* Set LED brightness level */
   /* Must not sleep, use a workqueue if needed */  //设置LED亮度等级*//*不能休眠,如果需要使用工作队列*/
   void      (*brightness_set)(struct led_classdev *led_cdev,
                 enum led_brightness brightness);
   /* Get LED brightness level 获取LED亮度等级 */
   enum led_brightness (*brightness_get)(struct led_classdev *led_cdev);

   /*
    * Activate hardware accelerated blink, delays are in milliseconds
    * and if both are zero then a sensible default should be chosen.
    * The call should adjust the timings in that case and if it can't
    * match the values specified exactly.
    * Deactivate blinking again when the brightness is set to a fixed
    * value via the brightness_set() callback.
    */ /* 激活硬件加速的闪烁 */
   int       (*blink_set)(struct led_classdev *led_cdev,
                 unsigned long *delay_on,
                 unsigned long *delay_off);

   struct device     *dev;
   const struct attribute_group   **groups;

   struct list_head    node;       /* LED Device list */ /* 所有已经注册的led_classdev使用这个节点串联起来 */
   const char    *default_trigger;  /* Trigger to use  默认使用的触发器*/

   unsigned long      blink_delay_on, blink_delay_off;
   struct timer_list   blink_timer;
   int           blink_brightness;

   struct work_struct set_brightness_work;
   int          delayed_set_value;

#ifdef CONFIG_LEDS_TRIGGERS  //如果配置内核时使能了触发器功能,才会编译下面一段
   /* Protects the trigger data below 保护下面的触发器数据*/
   struct rw_semaphore     trigger_lock;

   struct led_trigger *trigger;
   struct list_head    trig_list;
   void         *trigger_data;
   /* true if activated - deactivate routine uses it to do cleanup 如果激活-禁用例程使用它来做清理 */
   bool         activated;
#endif

   /* Ensures consistent access to the LED Flash Class device 确保对LED Flash类设备的一致访问 */
   struct mutex      led_access;
};

现在再来看看led_classdev_register这个函数的实现,当外部使用led子系统框架进行led实例驱动注册的时候,这个函数做了什么?

/**
 * led_classdev_register - register a new object of led_classdev class.
 * @parent: The device to register.
 * @led_cdev: the led_classdev structure for this device.
 */
int led_classdev_register(struct device *parent, struct led_classdev *led_cdev)
{
     /* 创建一个struct device,他的父设备是parent,drvdata是led_cdev,名字是led_cdev->name,类别是 leds_class*/
   led_cdev->dev = device_create_with_groups(leds_class, parent, 0,
               led_cdev, led_cdev->groups,
               "%s", led_cdev->name);     
   if (IS_ERR(led_cdev->dev))
      return PTR_ERR(led_cdev->dev);

#ifdef CONFIG_LEDS_TRIGGERS
   init_rwsem(&led_cdev->trigger_lock); //初始化led_cdev的触发器自旋锁
#endif
   mutex_init(&led_cdev->led_access); //初始化mutex锁
   /* add to the list of leds */
   down_write(&leds_list_lock); //获取写锁
   list_add_tail(&led_cdev->node, &leds_list); //将新的led加入链表,全局链表是leds_list
   up_write(&leds_list_lock); //释放读锁

   if (!led_cdev->max_brightness)
      led_cdev->max_brightness = LED_FULL;   //如果该led中的最大亮度值为0 则填充为255 LED_FULL = 255 

   led_update_brightness(led_cdev);  //获取led当前的亮度更新led_cdev的brightness成员

   INIT_WORK(&led_cdev->set_brightness_work, set_brightness_delayed);

   init_timer(&led_cdev->blink_timer);// 初始化内核定时器
   //填充指定的内核定时器
   led_cdev->blink_timer.function = led_timer_function; 
   led_cdev->blink_timer.data = (unsigned long)led_cdev;

#ifdef CONFIG_LEDS_TRIGGERS
   led_trigger_set_default(led_cdev);  //为led_cdev设置默认的触发器
#endif

   dev_dbg(parent, "Registered led device: %s\n",
         led_cdev->name);
   return 0;
}
EXPORT_SYMBOL_GPL(led_classdev_register);

那接下来看看brightness 同级目录下的 trigger

这个对应的cat echo 应该也是有两个对应的函数,那函数实现在哪呢?

这时引入前面提到的一个文件:kernel/msm-3.18/drivers/leds/led-triggers.c

看到这里,先介绍之前遇到但没有说明的一个结构体,

struct led_trigger:定义在/kernel/msm-3.18/include/linux/leds.h中,这里简单对该结构体作下分析。

struct led_trigger {
   /* Trigger Properties */
   const char  *name;  //触发器名字
   void      (*activate)(struct led_classdev *led_cdev);  //激活led。led_classdev和触发器建立连接时会调用这个方法。
   void      (*deactivate)(struct led_classdev *led_cdev);  //取消激活。led_classdev和触发器取消连接时会调用这个方法。

   /* LEDs under control by this trigger (for simple triggers) */ /* 本触发器控制之下的led链表 */
   rwlock_t     leddev_list_lock; //保护链表的锁
   struct list_head  led_cdevs;   //链表头

   /* Link to next registered trigger *//* 连接下一个已注册触发器的链表节点 ,所有已注册的触发器都会被加入一个全局链表*/
   struct list_head  next_trig;
};

现在在回到led-triggers.c,可以看到led_trigger_store和led_trigger_show函数,那这两个就是对于trigger文件的cat和echo 操作直接进入的函数了,同样我们也可以验证一下。

这里我们可以在细看下led_trigger_store函数中的处理:

ssize_t led_trigger_store(struct device *dev, struct device_attribute *attr,
      const char *buf, size_t count)
{
   struct led_classdev *led_cdev = dev_get_drvdata(dev);
   char trigger_name[TRIG_NAME_MAX];
   struct led_trigger *trig;
   size_t len;
   int ret = count;
    
    pr_err("hogo led_trigger_store\n");

   mutex_lock(&led_cdev->led_access);

   if (led_sysfs_is_disabled(led_cdev)) {
      ret = -EBUSY;
      goto unlock;
   }

   trigger_name[sizeof(trigger_name) - 1] = '\0';
   strncpy(trigger_name, buf, sizeof(trigger_name) - 1);
   len = strlen(trigger_name);

   if (len && trigger_name[len - 1] == '\n')
      trigger_name[len - 1] = '\0';

   if (!strcmp(trigger_name, "none")) {
      led_trigger_remove(led_cdev);
      goto unlock;
   }

   down_read(&triggers_list_lock);
   list_for_each_entry(trig, &trigger_list, next_trig) {
      if (!strcmp(trigger_name, trig->name)) {
         down_write(&led_cdev->trigger_lock);
         led_trigger_set(led_cdev, trig);
         up_write(&led_cdev->trigger_lock);

         up_read(&triggers_list_lock);
         goto unlock;
      }
   }
   up_read(&triggers_list_lock);

unlock:
   mutex_unlock(&led_cdev->led_access);
   return ret;
}
EXPORT_SYMBOL_GPL(led_trigger_store);

从上面的执行过程看,

当用户对trigger输入 none 时,触发器会被remove,同时会与led_classdev断开连接,触发deactivate方法

当用户对trigger输入 非 none时,触发器它会寻找所有已注册的触发器,找到同名的并设置为当前led的触发器。然后与led_classdev建立连接,建立连接的时候会调用触发器的activate方法

说到这,还要补充点之前没有说到的,led_classdev注册的时候也会调用led_trigger_set_default来遍历所有已注册的触发器,找到和led_classdev.default_trigger同名的触发器则将它设为自己的触发器。

那到现在我们可以看看activate和deactivate方法了,那么问题来了,这两个方法实现在哪里呢?

刚开始博主一脸懵逼,看网上说的leds/xxx 目录下trigger可以控制led山所,同时会有 delay_on,delay_off存在可以控制闪烁的频率,但路并不是那么顺啊,博主并没有看到啊,原来,是这么回事,怎么回事?经过之前的一些分析,有没有可以想到是什么原因呢?

原因是这样的,首先led闪烁需要led_classdev(led实例与一个已经注册的trigger进行连接,并且连接成功),才会调用blink相关的函数去控制led闪烁。那么博主的问题是啥呢?

博主所调试的平台代码,在kernel/msm-3.18/drivers/leds/trigger/下有一个 ledtrig-timer.c的文件,我们先看看里面的内容:

/*
 * LED Kernel Timer Trigger
 *
 * Copyright 2005-2006 Openedhand Ltd.
 *
 * Author: Richard Purdie <rpurdie@openedhand.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 */
#define DEBUG
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/ctype.h>
#include <linux/leds.h>

static ssize_t led_delay_on_show(struct device *dev,
      struct device_attribute *attr, char *buf)
{
   struct led_classdev *led_cdev = dev_get_drvdata(dev);
   return sprintf(buf, "%lu\n", led_cdev->blink_delay_on);
}

static ssize_t led_delay_on_store(struct device *dev,
      struct device_attribute *attr, const char *buf, size_t size)
{
   struct led_classdev *led_cdev = dev_get_drvdata(dev);
   unsigned long state;
   ssize_t ret = -EINVAL;

   ret = kstrtoul(buf, 10, &state);
   if (ret)
      return ret;

   led_blink_set(led_cdev, &state, &led_cdev->blink_delay_off);
   led_cdev->blink_delay_on = state;

   return size;
}

static ssize_t led_delay_off_show(struct device *dev,
      struct device_attribute *attr, char *buf)
{
   struct led_classdev *led_cdev = dev_get_drvdata(dev);
   return sprintf(buf, "%lu\n", led_cdev->blink_delay_off);
}

static ssize_t led_delay_off_store(struct device *dev,
      struct device_attribute *attr, const char *buf, size_t size)
{
   struct led_classdev *led_cdev = dev_get_drvdata(dev);
   unsigned long state;
   ssize_t ret = -EINVAL;

   ret = kstrtoul(buf, 10, &state);
   if (ret)
      return ret;

   led_blink_set(led_cdev, &led_cdev->blink_delay_on, &state);
   led_cdev->blink_delay_off = state;

   return size;
}

static DEVICE_ATTR(delay_on, 0644, led_delay_on_show, led_delay_on_store);
static DEVICE_ATTR(delay_off, 0644, led_delay_off_show, led_delay_off_store);

static void timer_trig_activate(struct led_classdev *led_cdev)
{
   int rc;

   led_cdev->trigger_data = NULL;

   rc = device_create_file(led_cdev->dev, &dev_attr_delay_on);
   if (rc)
      return;
   rc = device_create_file(led_cdev->dev, &dev_attr_delay_off);
   if (rc)
      goto err_out_delayon;

   led_blink_set(led_cdev, &led_cdev->blink_delay_on,
            &led_cdev->blink_delay_off);
   led_cdev->activated = true;

   return;

err_out_delayon:
   device_remove_file(led_cdev->dev, &dev_attr_delay_on);
}

static void timer_trig_deactivate(struct led_classdev *led_cdev)
{
   if (led_cdev->activated) {
      device_remove_file(led_cdev->dev, &dev_attr_delay_on);
      device_remove_file(led_cdev->dev, &dev_attr_delay_off);
      led_cdev->activated = false;
   }

   /* Stop blinking */
   led_set_brightness(led_cdev, LED_OFF);
}

static struct led_trigger timer_led_trigger = {
   .name     = "timer",
   .activate = timer_trig_activate,
   .deactivate = timer_trig_deactivate,
};

static int __init timer_trig_init(void)
{
   return led_trigger_register(&timer_led_trigger);
}

static void __exit timer_trig_exit(void)
{
   led_trigger_unregister(&timer_led_trigger);
}

module_init(timer_trig_init);
module_exit(timer_trig_exit);

MODULE_AUTHOR("Richard Purdie <rpurdie@openedhand.com>");
MODULE_DESCRIPTION("Timer LED trigger");
MODULE_LICENSE("GPL");

看完这个文件中代码,博主心中卧槽了一声,这不就是坑了我好久的问题吗,但问题是为啥对trigger文件进行相关操作后没有进入这里的一些函数呢?

想来想去,只可能是这个文件没有参与编译,导致名为 timer 的触发器没有注册成功,那么led_classdev就无法与这个触发器进行连接,无法连接也就无法触发这里面的一系列函数了,经过一波思考,然后立马打开内核编译配置文件,再次心中卧槽了一下,还真是没编译,然后宏编译添加进去,make 一波,重新烧录boot.img ,哦豁,

东西出来了,然后再次对trigger 进行echo 操作,哦豁,灯闪起来了,查看下闪烁频率,默认的是500ms,echo ms > delay_on/delay_off 查看灯闪频率,哟,修改成功,很nice.

 

ps:

参考:

https://blog.youkuaiyun.com/qq_20678703/article/details/49301193

https://blog.youkuaiyun.com/hanp_linux/article/details/79037610

https://blog.youkuaiyun.com/Fred_Wu/article/details/51149987

https://blog.youkuaiyun.com/u013256018/article/details/48682883

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wang 恒

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值