import torch from torch import nn import torch.optim as optimizer from torch.autograd import Variable import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn import datasets import numpy as np class simpleNet(nn.Module): def __init__(self, in_dim, n_hidden_1, n_hidden_2, out_dim): super(simpleNet, self).__init__() self.layer1 = nn.Sequential(nn.Linear(in_dim, n_hidden_1), nn.BatchNorm1d(n_hidden_1), nn.ReLU(True)) self.layer2 = nn.Sequential(nn.Linear(n_hidden_1, n_hidden_2), nn.BatchNorm1d(n_hidden_2), nn.ReLU(True)) self.layer3 = nn.Sequential(nn.Linear(n_hidden_2, out_dim)) def forward(self, x): x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) return x digits = datasets.load_digits() plt.gray() plt.matshow(digits.images[0]) plt.show() print(digits.data.shape) print(digits.target.shape) X_train, X_test, y_train, y_test = train_test_split(digits.data, di
基于pytorch全连接神经网络手写体数据识别,准确率达到百分之97
最新推荐文章于 2025-07-17 16:25:53 发布