基于pytorch全连接神经网络手写体数据识别,准确率达到百分之97

import torch
from torch import nn
import torch.optim as optimizer
from torch.autograd import Variable

import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn import datasets
import numpy as np

class simpleNet(nn.Module):
    def __init__(self, in_dim, n_hidden_1, n_hidden_2, out_dim):
        super(simpleNet, self).__init__()
        self.layer1 = nn.Sequential(nn.Linear(in_dim, n_hidden_1), nn.BatchNorm1d(n_hidden_1), nn.ReLU(True))
        self.layer2 = nn.Sequential(nn.Linear(n_hidden_1, n_hidden_2), nn.BatchNorm1d(n_hidden_2), nn.ReLU(True))
        self.layer3 = nn.Sequential(nn.Linear(n_hidden_2, out_dim))
    def forward(self, x):
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        return x



digits = datasets.load_digits()
plt.gray()
plt.matshow(digits.images[0])
plt.show()

print(digits.data.shape)
print(digits.target.shape)
X_train, X_test, y_train, y_test = train_test_split(digits.data, di
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值