Minimum Inversion Number
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 16802 Accepted Submission(s): 10219
Problem Description
The inversion number of a given number sequence a1, a2, ..., an is the number of pairs (ai, aj) that satisfy i < j and ai > aj.
For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:
a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
...
an, a1, a2, ..., an-1 (where m = n-1)
You are asked to write a program to find the minimum inversion number out of the above sequences.
For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:
a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
...
an, a1, a2, ..., an-1 (where m = n-1)
You are asked to write a program to find the minimum inversion number out of the above sequences.
Input
The input consists of a number of test cases. Each case consists of two lines: the first line contains a positive integer n (n <= 5000); the next line contains a permutation of the n integers from 0 to n-1.
Output
For each case, output the minimum inversion number on a single line.
Sample Input
10 1 3 6 9 0 8 5 7 4 2
Sample Output
16
solution:
首先我们利用线段树求出当前的逆序数的个数,然后从0~n-1进行模拟,由于含有的数字范围是0~n-1,我们令移完a[i-1]后的逆序数为sum,那么对于a[i],把它放入最后,逆序数变为sum+n-a[i]-a[i]-1
#include<cstdio> #include<algorithm> using namespace std; #define ls t<<1 #define rs (t<<1)|1 const int maxn = 5200; int a[maxn],fa[maxn]; struct node{ int l, r,val; }tree[maxn*4]; void pushup(int t) { tree[t].val =tree[ls].val+tree[rs].val; } void build(int l, int r, int t) { tree[t].l = l; tree[t].r = r; tree[t].val = 0; if (l == r) { fa[l] = t; return; } int mid = (l + r) / 2; build(l, mid, ls); build(mid + 1, r, rs); } void update(int t) { if (t == 1)return; t >>= 1; pushup(t); update(t); } int query(int l, int r, int t) { if (tree[t].l >= l&&tree[t].r <= r) return tree[t].val; int ans = 0; int mid = (tree[t].l + tree[t].r) / 2; if (l <= mid)ans+=query(l, r, ls); if (r > mid)ans+=query(l, r, rs); return ans; } int main() { int n,x,y; while (~scanf("%d",&n)) { build(1, n, 1); int sum = 0; for (int i = 0; i < n; i++) { scanf("%d", &a[i]); int x = a[i] + 1; sum += query(x, n, 1); tree[fa[x]].val = 1; update(fa[x]); } int ans = sum; for (int i = 0; i < n; i++) { sum += n - a[i] - a[i] - 1; ans = min(ans, sum); } printf("%d\n", ans); } return 0; }