hdu 5412 CRB and Queries(动态求区间第k小+整体二分)

本文探讨了在CodeLand中,如何高效地处理代码技能更新和区间查询的问题,提出了一种利用二分查找和树状数组相结合的方法来解决。通过区分左右区间的不同处理策略,实现了快速响应查询需求,确保了代码技能数据的实时性和准确性。
Problem Description
There are N boys in CodeLand.
Boy i has his coding skill Ai.
CRB wants to know who has the suitable coding skill.
So you should treat the following two types of queries.
Query 1: 1 l v
The coding skill of Boy l has changed to v.
Query 2: 2 l r k
This is a report query which asks the k-th smallest value of coding skill between Boy l and Boy r(both inclusive).
 

Input
There are multiple test cases. 
The first line contains a single integer N.
Next line contains N space separated integers A1A2, …, AN, where Ai denotes initial coding skill of Boy i.
Next line contains a single integer Q representing the number of queries.
Next Q lines contain queries which can be any of the two types.
1 ≤ NQ ≤ 105
1 ≤ Aiv ≤ 109
1 ≤ l ≤ r ≤ N
1 ≤ k ≤ r  l + 1

 

Output
For each query of type 2, output a single integer corresponding to the answer in a single line.
 

Sample Input
5 1 2 3 4 5 3 2 2 4 2 1 3 6 2 2 4 2
 

Sample Output
3 4
 


solution:

动态求区间第k大,可用树状数组套主席树,但对于这道题来说会TLE,其他树套树都不如整体二分快。

将修改看成是删除和添加,那么总共有添加、删除和查询三种操作。

这个判定操作是属于左区间还是右区间的过程就是通过比较比二分的mid大的数的个数和k。同时我们看到,如果比二分的mid小的数的个数小于k了,我们是要去寻找大的答案,那么这些比mid大的数在以后的递归里始终会对答案有贡献,所以我们没必要去做重复的工作,只需要把这些数的个数累积到贡献里,以后递归的时候就不用考虑这些数了。如果比二分的mid小的数大于k,就要寻找小的答案,那么那些本来就比mid大的添加和删除操作对答案不会产生影响,可以放在答案右区间。

详细见代码~

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
#define mem(a) memset(a,0,sizeof(a))
const int maxn = 420000;
const int inf = 1e9 + 7;
using namespace std;
struct query
{
    int x, y, k, s, tp, cur;//添加:tp=1 删除:tp=2 查询:tp=3
}q[maxn], q1[maxn], q2[maxn];
int a[maxn], ans[maxn], tmp[maxn], bit[maxn];
int n, m, num, cnt;//cnt为查询的顺序
void init()
{
    cnt = 0; num = 0;
    mem(bit); mem(tmp); mem(q);
}
void add(int x, int y)
{
    for (int i = x; i <= n; i += (i&-i))
        bit[i] += y;
}
int sum(int x)
{
    int tmp = 0;
    for (int i = x; i>0; i -= (i&-i))
        tmp += bit[i];
    return tmp;
}
void divide(int head, int tail, int l, int r)//表示下标head到tail的操作的答案区间为[l,r] 
{
    if (head>tail) return;
    if (l == r)
    {
        for (int i = head; i <= tail; i++)
            if (q[i].tp == 3) ans[q[i].s] = l;
        return;
    }
    int mid = (l + r) >> 1;
    for (int i = head; i <= tail; i++)
    {
        if (q[i].tp == 1 && q[i].y <= mid) add(q[i].x, 1);
        else if (q[i].tp == 2 && q[i].y <= mid) add(q[i].x, -1);
        else if (q[i].tp == 3) tmp[i] = sum(q[i].y) - sum(q[i].x - 1);
    }
    for (int i = head; i <= tail; i++)
    {
        if (q[i].tp == 1 && q[i].y <= mid) add(q[i].x, -1);
        else if (q[i].tp == 2 && q[i].y <= mid) add(q[i].x, 1);
    }
    int l1 = 0, l2 = 0;
    for (int i = head; i <= tail; i++)
        if (q[i].tp == 3)
        {
        if (q[i].cur + tmp[i]>q[i].k - 1)//q[i].cur+tmp[i]表示累积了多少个数
            q1[++l1] = q[i];
        else
        {
            q[i].cur += tmp[i];
            q2[++l2] = q[i];
        }
        }
        else
        {
            if (q[i].y <= mid) q1[++l1] = q[i];
            else q2[++l2] = q[i];
        }
    for (int i = 1; i <= l1; i++) q[head + i - 1] = q1[i];
    for (int i = 1; i <= l2; i++) q[head + l1 + i - 1] = q2[i];
    divide(head, head + l1 - 1, l, mid);
    divide(head + l1, tail, mid + 1, r);
}
int main()
{
    while (~scanf("%d",&n))
    {
        init();
        for (int i = 1; i <= n; i++)
        {
            scanf("%d", &a[i]);
            q[++num].x = i; q[num].y = a[i];
            q[num].tp = 1; q[num].s = 0;
        }
        int x, y, z,op;
        scanf("%d", &m);
        for (int i = 1; i <= m; i++)
        {
            scanf("%d", &op);
            if (op==2)
            {
                scanf("%d%d%d", &x, &y, &z);
                q[++num].x = x, q[num].y = y, q[num].k = z;
                q[num].tp = 3; q[num].s = ++cnt;
            }
            else
            {
                scanf("%d%d", &x, &y);
                q[++num].x = x; q[num].y = a[x];
                q[num].tp = 2; q[num].s = 0;
                q[++num].x = x; q[num].y = y;
                q[num].tp = 1; q[num].s = 0;
                a[x] = y;
            }
        }
        divide(1, num, 0, inf);
        for (int i = 1; i <= cnt; i++)
            printf("%d\n", ans[i]);
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值