hdu1082 Matrix Chain Multiplication

该问题描述了如何使用动态规划解决矩阵乘法问题,以找到最小的乘法操作数。给定一系列矩阵及其尺寸,以及表达式,程序需要计算评估表达式所需的最小乘法次数。示例输入和输出展示了不同矩阵组合的乘法操作计数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Matrix Chain Multiplication

Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 1348 Accepted Submission(s): 884

Problem Description
Matrix multiplication problem is a typical example of dynamical programming.

Suppose you have to evaluate an expression like A*B*C*D*E where A,B,C,D and E are matrices. Since matrix multiplication is associative, the order in which multiplications are performed is arbitrary. However, the number of elementary multiplications needed strongly depends on the evaluation order you choose.
For example, let A be a 50*10 matrix, B a 10*20 matrix and C a 20*5 matrix.
There are two different strategies to compute A*B*C, namely (A*B)C and A(B*C).
The first one takes 15000 elementary multiplications, but the second one only 3500.

Your job is to write a program that determines the number of elementary multiplications needed for a given evaluation strategy.

Input
Input consists of two parts: a list of matrices and a list of expressions.
The first line of the input file contains one integer n (1 <= n <= 26), representing the number of matrices in the first part. The next n lines each contain one capital letter, specifying the name of the matrix, and two integers, specifying the number of rows and columns of the matrix.
The second part of the input file strictly adheres to the following syntax (given in EBNF):

SecondPart = Line { Line }
Line = Expression
Expression = Matrix | “(” Expression Expression “)”
Matrix = “A” | “B” | “C” | … | “X” | “Y” | “Z”

Output
For each expression found in the second part of the input file, print one line containing the word “error” if evaluation of the expression leads to an error due to non-matching matrices. Otherwise print one line containing the number of elementary multiplications needed to evaluate the expression in the way specified by the parentheses.

Sample Input
9
A 50 10
B 10 20
C 20 5
D 30 35
E 35 15
F 15 5
G 5 10
H 10 20
I 20 25
A
B
C
(AA)
(AB)
(AC)
(A(BC))
((AB)C)
(((((DE)F)G)H)I)
(D(E(F(G(HI)))))
((D(EF))((GH)I))

Sample Output
0
0
0
error
10000
error
3500
15000
40500
47500
15125

用栈来解决矩阵乘法问题,碰到左括号不处理,矩阵压栈,碰到右括号时退栈两次,计算需要的乘法运算次数并累加。然后将相乘得到的矩阵压栈。

#include<iostream>
#include<stdio.h>
#include<cmath>
#include<algorithm>
#include<string>
#include<cstring>
#include<string.h>
#include<map>
#include<queue>
#include<stack>
#include<list>
#include<cctype>
#include<fstream>
#include<sstream>
#include<iomanip>
#include<set>
#include<vector>
#include<cstdlib>
#include<time.h>
using namespace std;
#define mem(x) memset(x,0,sizeof(x))
const int INF = 0x3fffffff;
const int MAXN = 1000005;

struct node
{
    int row;
    int col;
};
int main()
{
    int n;
    cin >> n;
    map<char, node> M;
    char c;
    for (int i = 0; i < n; i++)
    {
        cin >> c;
        cin >> M[c].row >> M[c].col;
    }
    string exp;
    while (cin >> exp)
    {
        int count = 0;
        stack<node> zhan;
        int i;
        for ( i = 0; i < exp.size(); i++)
        {
            if (exp[i] == '(')
                continue;
            else if (exp[i] == ')')
            {
                node a, b;
                b = zhan.top();
                zhan.pop();
                a = zhan.top();
                zhan.pop();
                if (a.col != b.row)
                    break;
                count += a.row*b.row*b.col;
                node c = { a.row, b.col };
                zhan.push(c);
            }
            else
            {
                zhan.push(M[exp[i]]);
            }
        }
        if (i == exp.size())
            cout << count << endl;
        else
            cout << "error" << endl;
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值