10.2.k8s的附加组件-Metrics-server组件与hpa资源pod水平伸缩

目录

一、概述

二、安装部署Metrics-Server组件

1.下载Metrics-Server资源清单

2.编辑Metrics-Server的资源清单

3.验证Metrics-Server是否成功安装

4.使用top命令测试是否管用

三、hpa资源实现pod水平伸缩(自动扩缩容)

1.编写deploy资源清单

2.编写hpa资源清单

3.查看hpa资源

四、压测

1.进入pod,安装和使用stress工具

2.查看hpa资源的负载情况


一、概述

Metrics-Server组件目的:获取集群中pod、节点等负载信息;

hpa资源目的:通过metrics-server获取的pod负载信息,自动伸缩创建pod;

参考链接:

资源指标管道 | Kubernetes

https://github.com/kubernetes/kubernetes/tree/master/cluster/addons/metrics-server

GitHub - kubernetes-sigs/metrics-server: Scalable and efficient source of container resource metrics for Kubernetes built-in autoscaling pipelines.

二、安装部署Metrics-Server组件

 就是给k8s集群安装top命令的意思;

1.下载Metrics-Server资源清单

[root@k8s1 k8s]# wget https://github.com/kubernetes-sigs/metrics-server/releases/latest/download/high-availability-1.21+.yaml

2.编辑Metrics-Server的资源清单

[root@k8s1 k8s]# vim high-availability-1.21+.yaml

apiVersion: v1
kind: ServiceAccount
metadata:
  labels:
    k8s-app: metrics-server
  name: metrics-server
  namespace: kube-system
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  labels:
    k8s-app: metrics-server
    rbac.authorization.k8s.io/aggregate-to-admin: "true"
    rbac.authorization.k8s.io/aggregate-to-edit: "true"
    rbac.authorization.k8s.io/aggregate-to-view: "true"
  name: system:aggregated-metrics-reader
rules:
- apiGroups:
  - metrics.k8s.io
  resources:
  - pods
  - nodes
  verbs:
  - get
  - list
  - watch
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  labels:
    k8s-app: metrics-server
  name: system:metrics-server
rules:
- apiGroups:
  - ""
  resources:
  - nodes/metrics
  verbs:
  - get
- apiGroups:
  - ""
  resources:
  - pods
  - nodes
  verbs:
  - get
  - list
  - watch
---
apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
  labels:
    k8s-app: metrics-server
  name: metrics-server-auth-reader
  namespace: kube-system
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: Role
  name: extension-apiserver-authentication-reader
subjects:
- kind: ServiceAccount
  name: metrics-server
  namespace: kube-system
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
  labels:
    k8s-app: metrics-server
  name: metrics-server:system:auth-delegator
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: system:auth-delegator
subjects:
- kind: ServiceAccount
  name: metrics-server
  namespace: kube-system
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
  labels:
    k8s-app: metrics-server
  name: system:metrics-server
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: system:metrics-server
subjects:
- kind: ServiceAccount
  name: metrics-server
  namespace: kube-system
---
apiVersion: v1
kind: Service
metadata:
  labels:
    k8s-app: metrics-server
  name: metrics-server
  namespace: kube-system
spec:
  ports:
  - name: https
    port: 443
    protocol: TCP
    targetPort: https
  selector:
    k8s-app: metrics-server
---
apiVersion: apps/v1
kind: Deployment
metadata:
  labels:
    k8s-app: metrics-server
  name: metrics-server
  namespace: kube-system
spec:
  replicas: 2
  selector:
    matchLabels:
      k8s-app: metrics-server
  strategy:
    rollingUpdate:
      maxUnavailable: 1
  template:
    metadata:
      labels:
        k8s-app: metrics-server
    spec:
      affinity:
        podAntiAffinity:
          requiredDuringSchedulingIgnoredDuringExecution:
          - labelSelector:
              matchLabels:
                k8s-app: metrics-server
            namespaces:
            - kube-system
            topologyKey: kubernetes.io/hostname
      containers:
      - args:
        #启动允许使用不安全的证书
        - --kubelet-insecure-tls
        - --cert-dir=/tmp
        - --secure-port=10250
        - --kubelet-preferred-address-types=InternalIP,ExternalIP,Hostname
        - --kubelet-use-node-status-port
        - --metric-resolution=15s
        #image: registry.k8s.io/metrics-server/metrics-server:v0.7.1
        image: registry.aliyuncs.com/google_containers/metrics-server:v0.6.3
        imagePullPolicy: IfNotPresent
        livenessProbe:
          failureThreshold: 3
          httpGet:
            path: /livez
            port: https
            scheme: HTTPS
          periodSeconds: 10
        name: metrics-server
        ports:
        - containerPort: 10250
          name: https
          protocol: TCP
        readinessProbe:
          failureThreshold: 3
          httpGet:
            path: /readyz
            port: https
            scheme: HTTPS
          initialDelaySeconds: 20
          periodSeconds: 10
        resources:
          requests:
            cpu: 100m
            memory: 200Mi
        securityContext:
          allowPrivilegeEscalation: false
          capabilities:
            drop:
            - ALL
          readOnlyRootFilesystem: true
          runAsNonRoot: true
          runAsUser: 1000
          seccompProfile:
            type: RuntimeDefault
        volumeMounts:
        - mountPath: /tmp
          name: tmp-dir
      nodeSelector:
        kubernetes.io/os: linux
      priorityClassName: system-cluster-critical
      serviceAccountName: metrics-server
      volumes:
      - emptyDir: {}
        name: tmp-dir
---
apiVersion: policy/v1
kind: PodDisruptionBudget
metadata:
  labels:
    k8s-app: metrics-server
  name: metrics-server
  namespace: kube-system
spec:
  minAvailable: 1
  selector:
    matchLabels:
      k8s-app: metrics-server
---
apiVersion: apiregistration.k8s.io/v1
kind: APIService
metadata:
  labels:
    k8s-app: metrics-server
  name: v1beta1.metrics.k8s.io
spec:
  group: metrics.k8s.io
  groupPriorityMinimum: 100
  insecureSkipTLSVerify: true
  service:
    name: metrics-server
    namespace: kube-system
  version: v1beta1
  versionPriority: 100

[root@k8s1 k8s]# kubectl apply -f high-availability-1.21+.yaml

3.验证Metrics-Server是否成功安装

4.使用top命令测试是否管用

[root@k8s1 k8s]# kubectl top node
NAME   CPU(cores)   CPU%   MEMORY(bytes)   MEMORY%   
k8s1   734m         18%    867Mi           11%       
k8s2   118m         2%     493Mi           6%        
[root@k8s1 k8s]# kubectl top  pods -A
NAMESPACE      NAME                             CPU(cores)   MEMORY(bytes)   
default        dm01-7875cdc8b4-4lb62            0m           4Mi             
default        dm01-7875cdc8b4-mt7hs            0m           2Mi             
default        dm01-7875cdc8b4-zv94k            0m           2Mi             
kube-flannel   kube-flannel-ds-jg8nq            7m           20Mi            
kube-flannel   kube-flannel-ds-scx6p            7m           22Mi            
kube-system    coredns-6d8c4cb4d-55v2q          2m           18Mi            
kube-system    coredns-6d8c4cb4d-khrbf          2m           18Mi            
kube-system    etcd-k8s1                        14m          66Mi            
kube-system    kube-apiserver-k8s1              55m          175Mi           
kube-system    kube-controller-manager-k8s1     18m          50Mi            
kube-system    kube-proxy-lsjgc                 1m           19Mi            
kube-system    kube-proxy-vfbqr                 1m           17Mi            
kube-system    kube-scheduler-k8s1              4m           21Mi            
kube-system    metrics-server-dfb9648d6-2fcng   4m           19Mi            
kube-system    metrics-server-dfb9648d6-4l85l   4m           22Mi 

三、hpa资源实现pod水平伸缩(自动扩缩容)

  1. 当资源使用超一定的范围,会自动扩容,但是扩容数量不会超过最大pod数量;
  2. 扩容时无延迟,只要监控资源使用超过阔值,则会直接创建pod;
  3. 当资源使用率恢复到阔值以下时,需要等待一段时间才会释放,大概时5分钟;

1.编写deploy资源清单

[root@k8s1 k8s]# cat deploy.yaml 
apiVersion: apps/v1
kind: Deployment
metadata:
  name: dm-hpa
spec:
  replicas: 1
  selector:
    matchLabels:
      k8s: oslee
  template:
    metadata:
      labels:
        k8s: oslee
    spec:
      containers:
      - name: c1
        image: centos:7
        command:
        - tail
        - -f
        - /etc/hosts
        resources:
          requests:
            cpu: "50m"
          limits:
            cpu: "150m"


[root@k8s1 k8s]# kubectl apply -f deploy.yaml 
deployment.apps/dm-hpa created

2.编写hpa资源清单

[root@k8s1 k8s]# cat hpa.yaml 
apiVersion: autoscaling/v1
kind: HorizontalPodAutoscaler
metadata:
  name: hpa-tools
spec:
  #指定pod最大的数量是多少(自动扩容的上限)
  maxReplicas: 10
  #指定pod最小的pod数量是多少(自动缩容的下限)
  minReplicas: 2
  #弹性伸缩引用的目标是谁?
  scaleTargetRef:
    #目标资源的api
    apiVersion: "apps/v1"
    #目标资源的类型kind
    kind: Deployment
    #目标资源的名称metadata-name是什么
    name: dm-hpa
  #使用cpu阈值(使用到达多少,开始扩容、缩容)
  #95%
  targetCPUUtilizationPercentage: 95

[root@k8s1 k8s]# kubectl apply -f hpa.yaml 
horizontalpodautoscaler.autoscaling/hpa-tools created

3.查看hpa资源

[root@k8s1 k8s]# kubectl get hpa -o wide
NAME        REFERENCE           TARGETS   MINPODS   MAXPODS   REPLICAS   AGE
hpa-tools   Deployment/dm-hpa   0%/95%    2         10        2          102s

四、压测

1.进入pod,安装和使用stress工具

# 进入pod容器
[root@k8s1 k8s]# kubectl exec -it pod/dm-hpa-844c748565-jpzxt -- sh
sh-4.2# yum -y install wget

# 安装aili源和epel源
sh-4.2# wget -O /etc/yum.repos.d/CentOS-Base.repo https://mirrors.aliyun.com/repo/Centos-7.repo
sh-4.2# wget -O /etc/yum.repos.d/epel.repo https://mirrors.aliyun.com/repo/epel-7.repo

# 安装压测工具
sh-4.2# yum -y install stress

# 开始使用命令压测pod
sh-4.2# stress --cpu 8 --io 4 --vm 2 --vm-bytes 128M --timeout 20m

2.查看hpa资源的负载情况

[root@k8s1 ~]# kubectl get hpa -o wide
NAME        REFERENCE           TARGETS    MINPODS   MAXPODS   REPLICAS   AGE
hpa-tools   Deployment/dm-hpa   100%/95%   2         10        3          11m
[root@k8s1 ~]# kubectl get pod
NAME                      READY   STATUS    RESTARTS   AGE
dm-hpa-844c748565-jbn7s   1/1     Running   0          7m17s
dm-hpa-844c748565-jpzxt   1/1     Running   0          11m
dm-hpa-844c748565-tn8fr   1/1     Running   0          24m

可以看到:

  1. 我们创建的deploy资源只有一个副本;
  2. 我们创建的hpa资源之后,设置最小值是2,最大值是10 ;
  3. 我们在查看pod,可以看见,pod变成了2个;
  4. 我们进入容器,开始压测,将负载压测到超过95%;
  5. 再次查看pod,发现变成了3个,自动创建了一个;
  6. 关闭压测,5分钟后,pod有回归到了2个;
  7. 至此,hpa的pod自动伸缩,测试完毕;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值