数据库语法

教程文档:http://www.runoob.com/mysql/mysql-like-clause.html


where:

where  item like '%com'

%是通配符


UNION:用于连接两个以上的 SELECT 语句的结果组合到一个结果集合中

SELECT expression1, expression2, ... expression_n
FROM tables
[WHERE conditions]
UNION [ALL | DISTINCT]
SELECT expression1, expression2, ... expression_n
FROM tables

[WHERE conditions];

DISTINCT: 可选,删除结果集中重复的数据。默认情况下 UNION 操作符已经删除了重复数据,所以 DISTINCT 修饰符对结果没啥影响。

ALL: 可选,返回所有结果集,包含重复数据。


GROUP BY :在分组的列上我们可以使用 COUNT, SUM, AVG,等函数。

SELECT name, COUNT(*) FROM   table_name GROUP BY name;

SELECT name, SUM(singin) as singin_count FROM  employee_tbl GROUP BY name WITH ROLLUP;

as用于取该列的名字,不写的话该列名为SUM(singin),这里WITH ROLLUP作用为将singin_count 列中所有元素在做sum操作

coalesce(name, '总数')函数用于当name为NULL时,赋值为'总数'

例:

SELECT coalesce(name, '总数'), SUM(singin) as singin_count FROM  employee_tbl GROUP BY name WITH ROLLUP;

内容概要:本文档详细介绍了在三台CentOS 7服务器(IP地址分别为192.168.0.157、192.168.0.158和192.168.0.159)上安装和配置Hadoop、Flink及其他大数据组件(如Hive、MySQL、Sqoop、Kafka、Zookeeper、HBase、Spark、Scala)的具体步骤。首先,文档说明了环境准备,包括配置主机名映射、SSH免密登录、JDK安装等。接着,详细描述了Hadoop集群的安装配置,包括SSH免密登录、JDK配置、Hadoop环境变量设置、HDFS和YARN配置文件修改、集群启动与测试。随后,依次介绍了MySQL、Hive、Sqoop、Kafka、Zookeeper、HBase、Spark、Scala和Flink的安装配置过程,包括解压、环境变量配置、配置文件修改、服务启动等关键步骤。最后,文档提供了每个组件的基本测试方法,确保安装成功。 适合人群:具备一定Linux基础和大数据组件基础知识的运维人员、大数据开发工程师以及系统管理员。 使用场景及目标:①为大数据平台搭建提供详细的安装指南,确保各组件能够顺利安装和配置;②帮助技术人员快速掌握Hadoop、Flink等大数据组件的安装与配置,提升工作效率;③适用于企业级大数据平台的搭建与维护,确保集群稳定运行。 其他说明:本文档不仅提供了详细的安装步骤,还涵盖了常见的配置项解释和故障排查建议。建议读者在安装过程中仔细阅读每一步骤,并根据实际情况调整配置参数。此外,文档中的命令和配置文件路径均为示例,实际操作时需根据具体环境进行适当修改。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值