方法1,图的深度优先搜索
该问题即求,图中有多少个区域是相连的,可以使用图的深搜或广搜
class Solution {
public:
void DFS(int i,vector<vector<int> >& graph,vector<int>& visit)
{
visit[i] = 1;
for(int j = 0;j<graph[i].size();++j)
{
if(graph[i][j] == 1 && visit[j] == 0)
DFS(j,graph,visit);
}
}
int findCircleNum(vector<vector<int>>& M) {
vector<int> visit(M.size(),0);
int cnt = 0;
for(int i = 0;i<M.size();++i)
{
if(visit[i] == 0)
{
DFS(i,M,visit);
cnt++;
}
}
return cnt;
}
};
方法2,并查集
设置并查集,大小为M.size();
对任意两个学生i,j,如果他们存在友谊,则将他们合并;
返回并查集集合个数
class DisjoinSet{
public:
DisjoinSet(int n)//设置表示集合数组,初始时每个元素构成一个单元素的几个,编号为i的属于集合i
{
for(int i = 0; i < n; ++i)
{
id.push_back(i);
_size.push_back(1);
}
count = n;
}
//int find(int p)
//{//查询p属于哪个集合
// return id[p];
//}
//森林实现的find
int find(int p)
{
while(p != id[p])
{
id[p] = id[id[p]];
p = id[p];
}
return p;
}
//void union_(int p, int q)
//{
// int pid = find(p);
// int qid = find(q);
// if(pid == qid)
// return;
// for(int i = 0; i < id.size(); ++i)
// {
// if(id[i] == pid)
// id[i] = qid;//将所有属于pid集合的改为qid
// }
//}
//森林实现的合并
void union_(int p,int q)
{
int i = find(p);
int j = find(q);
if(i == j)
return;
if(_size[i] < _size[j])
{
id[i] = j;
_size[j] += _size[i];
}
else{
id[j] = i;
_size[i] += _size[j];
}
count--;
}
void print_set()
{
printf("元素: ");
for(int i = 0; i < id.size(); ++i)
printf("%d ", i);
printf("\n");
printf("集合: ");
for(int i = 0; i < id.size(); ++i)
printf("%d ", id[i]);
printf("\n");
}
int Count()
{
return count;
}
private:
std::vector<int> id;
//森林实现增加的:
std::vector<int> _size;
int count;
};
class Solution {
public:
int findCircleNum(vector<vector<int>>& M) {
DisjoinSet disjoin_set(M.size());
for(int i = 0;i<M.size();++i)
{
for(int j = i+1;j<M.size();++j)
{
if(M[i][j])
disjoin_set.union_(i,j);
}
}
return disjoin_set.Count();
}
};