[codevs 1227] 方格取数 2
题解:
注:这是CODEVS的方格取数2,走k次的版本。
因为每个格子可以走无数次,但走过一次之后数字就变成了0,也就是只有一次可以加上格子里的数字。所以要拆点(X->Xi,Xj),在Xi和Xj之间连一条容量为1,费用为数字的相反数的边(取走该格数字),再连一条容量为INF,费用为0的边(第2,3...n次走该格)。再从每个格子的Xj点向左面及下面的格子的Xi点连一条容量为1,费用为0的边,最后从源点向第一个格子的Xi连一条容量为k(走k次)费用为0,从最后一个点的Xj向汇点连一条同样的边。求解最小费用最大流,费用的相反数就是答案。
代码:
总时间耗费: 149ms
总内存耗费: 1 kB
总内存耗费: 1 kB
#include<cstdio>
#include<iostream>
#include<vector>
#include<queue>
#include<algorithm>
using namespace std;
const int INF = 1e8 + 7;
const int maxn = 50 * 50 * 2 + 10;
struct Edge{
int from, to, cap, flow, cost;
};
vector<Edge> edges;
vector<int> G[maxn];
int n, k, s, t;
void encode(int i, int j, int& THIS, int& NEXT, int& DOWN, int& LEFT) {
i--; j--;
THIS = i * n + j + 1;
NEXT = THIS + n*n;
DOWN = i < n-1 ? THIS + n : 0;
LEFT = j < n-1 ? THIS + 1 : 0;
}
void AddEdge(int from, int to, int cap, int cost) {
edges.push_back((Edge){from, to, cap, 0, cost});
edges.push_back((Edge){to, from, 0, 0, -cost});
int m = edges.size();
G[from].push_back(m-2);
G[to].push_back(m-1);
}
int d[maxn], a[maxn], p[maxn];
bool inq[maxn];
bool SPFA(int &cost) {
for(int i = 0; i <= t; i++) d[i] = INF;
memset(inq, 0, sizeof(inq));
d[s] = 0; inq[s] = 1; a[s] = INF; p[s] = 0;
queue<int> Q;
Q.push(s);
while(!Q.empty()) {
int u = Q.front(); Q.pop();
inq[u] = 0;
for(int i = 0; i < G[u].size(); i++) {
Edge& e = edges[G[u][i]];
if(e.cap > e.flow && d[u] + e.cost < d[e.to]) {
d[e.to] = d[u] + e.cost;
p[e.to] = G[u][i];
a[e.to] = min(a[u], e.cap - e.flow);
if(!inq[e.to]) {
Q.push(e.to);
inq[e.to] = 1;
}
}
}
}
if(d[t] == INF) return 0;
cost += d[t] * a[t];
int u = t;
while(u != s) {
edges[p[u]].flow += a[t];
edges[p[u]^1].flow -= a[t];
u = edges[p[u]].from;
}
return 1;
}
int maxflow() {
int cost = 0;
while(SPFA(cost));
return cost;
}
int main() {
cin >> n >> k;
s = 0; t = n*n*2 + 1;
for(int i = 1; i <= n; i++)
for(int j = 1; j <= n; j++) {
int THIS, NEXT, DOWN, LEFT;
encode(i, j, THIS, NEXT, DOWN, LEFT);
int w;
cin >> w;
AddEdge(THIS, NEXT, 1, -w);
AddEdge(THIS, NEXT, INF, 0);
if(LEFT) AddEdge(NEXT, LEFT, INF, 0);
if(DOWN) AddEdge(NEXT, DOWN, INF, 0);
}
AddEdge(s, 1, k, 0);
AddEdge(t-1, t, k, 0);
cout << -maxflow() << endl;
return 0;
}