模型压缩-剪枝算法详解

本文详细介绍了模型剪枝的概念,强调了模型压缩在降低硬件需求和保持模型精度方面的重要性。深度神经网络的稀疏性包括权重、激活和梯度稀疏。权重剪枝通过删除不重要的权重,而激活剪枝和梯度剪枝分别针对神经元和梯度的稀疏性。结构化稀疏,如通道/滤波器剪枝和阶段级别剪枝,更适合硬件加速,但可能牺牲模型准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一,前言

学术界的 SOTA 模型在落地部署到工业界应用到过程中,通常是要面临着低延迟(Latency)、高吞吐(Throughpout)、高效率(Efficiency)挑战的。而模型压缩算法可以将一个庞大而复杂的预训练模型转化为一个精简的小模型,从而减少对硬件的存储、带宽和计算需求,以达到加速模型推理和落地的目的。

近年来主流的模型压缩方法包括:数值量化(Data Quantization,也叫模型量化)模型稀疏化(Model sparsification,也叫模型剪枝 Model Pruning)知识蒸馏(Knowledge Distillation)轻量化网络设计(Lightweight Network Design)和 张量分解(Tensor Decomposition)

其中模型剪枝是一种应用非常广的模型压缩方法,其可以直接减少模型中的参数量。本文会对模型剪枝的定义、发展历程、分类以及算法原理进行详细的介绍。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

嵌入式视觉

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值