深度学习-38-基于PyTorch的卷积神经网络AlexNet

1 AlexNet (2012)

1.1 学习表征

在 2012 年以前,图像特征都是机械地计算出来的。在当时,设计一套新的特征函数、改进结果,并撰写论文是主流。

在传统机器学习方法中,计算机视觉流水线是由经过人的精心设计的特征流水线组成的。计算机视觉研究人员相信,从对最终模型精度的影响来说,更大或更干净的数据集、或是稍微改进的特征提取,比任何学习算法带来的进步大得多。

另有一些研究人员有不同的想法,他们认为特征本身就应该被学习。此外,他们还认为,在合理的复杂性前提下,特征应该由多个共同学习的神经网络层组成,每个层都有可学习的参数。

尽管一直有一群执着的研究者不断钻研,试图学习视觉数据的逐级表征,但很长一段时间都未能有所突破。深度卷积神经网络的突破出现在 2012 年,可归因于两个因素:数据和硬件。
(1)数据
2009 年,ImageNet 数据集发布,并发起 ImageNet 挑战赛,其推动了计算机视觉和机器学习研究的发展。

(2)硬件
深度学习对计算资源的要求很高,训练可能需要数百个迭代轮数,每次迭代都需要通过代价高昂的许多线性代数层传递数据。

然而,用 GPU 训练神经网络

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

皮皮冰燃

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值