R语言用极大似然和梯度下降算法估计GARCH(p)过程

本文探讨了如何使用GARCH模型分析股票价格数据,通过ARCH(1)过程展示条件方差,并利用R语言进行参数估计。文章提到了自相关、似然函数、最大似然技术和GARCH(1,1)模型,并展示了如何处理非高斯分布的数据。还讨论了轮廓似然方法和参数估计的优化过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 全文代码数据

 

最近我们被客户要求撰写关于GARCH的研究报告,包括一些图形和统计输出。

相关视频:时间序列分析:ARIMA GARCH模型分析股票价格数据

时间序列分析模型 ARIMA-ARCH GARCH模型分析股票价格数据

本文考虑一些ARCH(p)过程,例如ARCH(1)。

其中

有一个高斯白噪声 .

> for(t in 3:n){
+ sigma2[t]=w+a1*epsilon[t-1]^2+a2*epsilon[t-2]^2
+ epsilon[t]=eta[t]*sqrt(sigma2[t])
+ }

(红线是条件方差过程)。

> acf(epsilon,lag=50,lwd=2)

如果是一个ARCH(),那么就是一个AR(1)过程。所以第一个想法是考虑回归,就像我们对AR(1)所做的那样

> summary(lm(Y~X1,data=db))

 这里有一些明显的自相关。但由于我们的向量不能被认为是高斯分布的,使用最小二乘法也许不是最好的策略。实际上,如果我们的序列不是高斯分布的,它仍然是有条件的高斯分布的,因为我们假设是高斯(强)白噪声。

然后,似然函数是

而对数似然函数为

而一个自然的想法是定义

代码简单地说就是


> OPT=optim(par=
+ coefficients(lm(Y~X1,data=db)),fn=loglik)

由于参数必须是正数,我们在此假定它们可以写成一些实数的指数。观察一下,这些值更接近于用来生成我们的时间序列的值。

如果我们使用R函数来估计这些参数,我们会得到

> summary(garch(epsilon,c(0,1)))
...

 所以的置信区间是 

coef[2,1]+
+ c(-1.96,1.96)*coef[2,2]

 实际上,由于我们的主要兴趣是这个参数,所以有可能使用轮廓似然方法。

> OPT=optimize(function(x) -proflik(x), interval=c(0,2))
objective-qchisq(.95,df=1)
> abline(h=t,col="red")

当然,所有这些技术都可以扩展到高阶ARCH过程。例如,如果我们假设有一个ARCH(2)时间序列

其中

有一个高斯(强)白噪声 .对数似然性仍然是

而我们可以定义

上面的代码可以被修改,以考虑到这个额外的部分。

optim(par=
+ coefficients(lm(Y~X1+X2,data=db)),fn=loglik)

我们也可以考虑一些广义的ARCH过程,例如GARCH(1,1)。

其中

同样,可以使用最大似然技术。实际上,我们也可以用Fisher-Scoring算法编码,因为(在一个非常普遍的情况下 

这里 . 使用标准的梯度下降算法,我们可以得到以下对GARCH过程的估计。


> while(sum(G^2)>1e-12){
+ s2=rep(theta[1],n)
+ for (i in 2:n){s2[i]=theta[1]+theta[2]*X[(i-1)]^2+theta[3]*s2[(i-1)]}

这里有趣的一点是,我们也得出了(渐进的)方差

>sqrt(diag(solve(H))


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值