统计学习方法
qq_18617299
无无无
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
决策树ID3 算法python实现
#!/usr/bin/python #-*-coding:utf-8 -*- from mathimport log def createDataSET(): dataSet=[[1,1,"yes"], [1,1,"yes"], [1,0,"no"], [0,1,"no"],原创 2017-12-11 20:26:58 · 298 阅读 · 0 评论 -
朴素贝叶斯方法的学习与分类
#!/usr/bin/python #-*-coding:utf-8 -*- #贝叶斯实现 def createDataSET(): dataSet=[[1,"S",-1], [1,"M",-1], [1,"M",1], [1,"S",1], [1,"S",-1],原创 2017-12-20 20:21:22 · 279 阅读 · 0 评论 -
决策树剪枝中的损失函数的实现
#!/usr/bin/python #-*-coding:utf-8 -*- #决策树的剪枝算法 import ID3alogorithem as id3 from math import log # myTree数据类型 {'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}} #计算每个结点的经验熵 def eachN原创 2017-12-18 16:52:56 · 1674 阅读 · 0 评论 -
感知机(Python实现,简单)
#!/usr/bin/python #-*-coding:utf-8 -*- import random from numpy import * import numpy as np def training(): train_data1 = [[3, 3, 1], [4, 3, 1]] # 正样本 train_data2 = [[1, 1, -1]] # 负样本 t原创 2018-01-20 11:44:42 · 1581 阅读 · 0 评论 -
K近邻法 python代码实现
# -*- coding: utf-8 -*- from math import sqrt from numpy import * def createDataSet(): group = array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]]) labels = ['A','A','B','B'] return group, labels ...原创 2018-12-23 16:08:03 · 433 阅读 · 0 评论 -
朴素贝叶斯法 python实现
#!/usr/bin/python #-*-coding:utf-8 -*- #贝叶斯实现 def createDataSET(): dataSet=[[1,"S",-1], [1,"M",-1], [1,"M",1], [1,"S",1], [1,"S",-1], ...原创 2018-12-23 19:36:14 · 154 阅读 · 0 评论
分享