Sumsets
Time Limit: 6000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 1869 Accepted Submission(s): 730
Problem Description
Farmer John commanded his cows to search for different sets of numbers that sum to a given number. The cows use only numbers that are an integer power of 2. Here are the possible sets of numbers that sum to 7:
1) 1+1+1+1+1+1+1
2) 1+1+1+1+1+2
3) 1+1+1+2+2
4) 1+1+1+4
5) 1+2+2+2
6) 1+2+4
Help FJ count all possible representations for a given integer N (1 <= N <= 1,000,000).
1) 1+1+1+1+1+1+1
2) 1+1+1+1+1+2
3) 1+1+1+2+2
4) 1+1+1+4
5) 1+2+2+2
6) 1+2+4
Help FJ count all possible representations for a given integer N (1 <= N <= 1,000,000).
Input
A single line with a single integer, N.
Output
The number of ways to represent N as the indicated sum. Due to the potential huge size of this number, print only last 9 digits (in base 10 representation).
Sample Input
7
Sample Output
6
Source
Recommend
之前用母函数做的,一直超时!!
//母函数
#include<stdio.h>
#include<string.h>
__int64 f[40]={1,2,4,8,16,32,64,128,256,512,1024,2048};
//,4096,8192,16384,32768,65536,131072,262144,524288,1048576,2097152,4194304,8388608,16777216,33554432,67108864};
//,2147483648};
__int64 c1[1000001],c2[1000001];
__int64 N,i,j,k;
int main()
{
while(~scanf("%I64d",&N))
{
memset(c1,0,sizeof(c1));
memset(c2,0,sizeof(c2));
for(i=0;i<=N;++i)
c1[i]=1;
for(i=1;f[i]<=N;++i)
{
for(j=0;j<=N;j++)
{
for(k=0;k<=N;k+=f[i])
c2[k+j]+=c1[j],c2[k+j]%=100000000;
}
for(j=0;j<=N;++j)
c1[j]=c2[j],c2[j]=0;
//printf("%d\n..",c1[N]);
}
printf("%d\n",c1[N]) ;
}
return 0;
}
#include<stdio.h>
#include<string.h>
int dp[1000010];
int main(){
int n;
memset(dp,0,sizeof(dp));
dp[0]=1;
for(int i=1;i<=1000000;i*=2){
for(int j=i;j<=1000000;++j){
dp[j]+=dp[j-i];
dp[j]%=1000000000;
}
}
while(~scanf("%d",&n)){
printf("%d\n",dp[n]);
}
return 0;
}