知识图谱的基石:RDF
本文将结合实例,对RDF和RDFS/OWL,这两种知识图谱基础技术作进一步的介绍。其实,RDF、RDFS/OWL是类语义网概念背后通用的基本技术,而知识图谱是其中最广为人知的概念。
RDF表现形式
RDF(Resource Description Framework),即资源描述框架,其本质是一个数据模型(Data Model)。它提供了一个统一的标准,用于描述实体/资源。简单来说,就是表示事物的一种方法和手段。RDF形式上表示为SPO三元组,有时候也称为一条语句(statement),知识图谱中我们也称其为一条知识,如下图。
RDF由节点和边组成,节点表示实体/资源、属性,边则表示了实体和实体之间的关系以及实体和属性的关系。
RDF序列化方法
RDF的表示形式和类型有了,那我们如何创建RDF数据集,将其序列化(Serialization)呢?换句话说,就是我们怎么存储和传输RDF数据。目前,RDF序列化的方式主要有:RDF/XML,N-Triples,Turtle,RDFa,JSON-LD等几种。
- N-Triples,即用多个三元组来表示RDF数据集,是最直观的表示方法。在文件中,每一行表示一个三元组,方便机器解析和处理。开放领域知识图谱DBpedia通常是用这种格式来发布数据的。
- Turtle, 应该是使用得最多的一种RDF序列化方式了。它比RDF/XML紧凑,且可读性比N-Triples好。
- RDFa, 即“The Resource Description Framework in Attributes”,是HTML5的一个扩展,在不改变任何显示效果的情况下,让网站构建者能够在页面中标记实体,像人物、地点、时间、评论等等。也就是说,将RDF数据嵌入到网页中,搜索引擎能够更好的解析非结构化页面,获取一些有用的结构化信息。
- JSON-LD,即“JSON for Linking Data”,用键值对的方式来存储RDF数据。
下面,我们结合第一篇文章中罗纳尔多知识图的例子,给出其N-Triples和Turtle的具体表示。
Example1 N-Triples:
<http://www.kg.com/person/1> <http://www.kg.com/ontology/chineseName> "罗纳尔多·路易斯·纳萨里奥·德·利马"^^string.
<http://www.kg.com/person/1> <http://www.kg.com/ontology/career> "足球运动员"^^string.
<http://www.kg.com/person/1> <http://www.kg.com/ontology/fullName> "Ronaldo Luís Nazário de Lima"^^string.
<http://www.kg.com/person/1> <http://www.kg.com/ontology/birthDate> "1976-09-18"^^date.
<http://www.kg.com/person/1> <http://www.kg.com/ontology/height> "180"^^int.
<http://www.kg.com/person/1> <http://www.kg.com/ontology/weight> "98"^^int.
<http://www.kg.com/person/1> <http://www.kg.com/ontology/nationality> "巴西"^^string.
<http://www.kg.com/person/1> <http://www.kg.com/ontology/hasBirthPlace> <http://www.kg.com/place/10086>.
<http://www.kg.com/place/10086> <http://www.kg.com/ontology/address> "里约热内卢"^^string.
<http://www.kg.com/place/10086> <http://www.kg.com/ontology/coordinate> "-22.908333, -43.196389"^^string.
用Turtle表示的时候我们会加上前缀(Prefix)对RDF的IRI进行缩写。
Example2 Turtle:
@prefix person: <http://www.kg.com/person/> .
@prefix place: <http://www.kg.com/place/> .
@prefix : <http://www.kg.com/ontology/> .
person:1 :chineseName "罗纳尔多·路易斯·纳萨里奥·德·利马"^^string.
person:1 :career "足球运动员"^^string.
person:1 :fullName "Ronaldo Luís Nazário de Lima"^^string.
person:1 :birthDate "1976-09-18"^^date.
person:1 :height "180"^^int.
person:1 :weight "98"^^int.
person:1 :nationality "巴西"^^string.
person:1 :hasBirthPlace place:10086.
place:10086 :address "里约热内卢"^^string.
place:10086 :coordinate "-22.908333, -43.196389"^^string.
同一个实体拥有多个属性(数据属性)或关系(对象属性),我们可以只用一个subject来表示,使其更紧凑。我们可以将上面的Turtle改为:
Example3 Turtle:
@prefix person: <http://www.kg.com/person/> .
@prefix place: <http://www.kg.com/place/> .
@prefix : <http://www.kg.com/ontology/> .
person:1 :chineseName "罗纳尔多·路易斯·纳萨里奥·德·利马"^^string;
:career "足球运动员"^^string;
:fullName "Ronaldo Luís Nazário de Lima"^^string;
:birthDate "1976-09-18"^^date;
:height "180"^^int;
:weight "98"^^int;
:nationality "巴西"^^string;
:hasBirthPlace place:10086.
place:10086 :address "里约热内卢"^^string;
:coordinate "-22.908333, -43.196389"^^string.
即,将一个实体用一个句子表示(这里的句子指的是一个英文句号“.”)而不是多个句子,属性间用分号隔开。
RDF的表达能力
RDF的表达能力有限,无法区分类和对象,也无法定义和描述类的关系/属性。我的理解是,RDF是对具体事物的描述,缺乏抽象能力,无法对同一个类别的事物进行定义和描述。
RDFS和OWL这两种技术或者说模式语言/本体语言(schema/ontology language)解决了RDF表达能力有限的困境。
RDF的“衣服”——RDFS/OWL
之所以说RDFS/OWL是RDF的“衣服”,因为它们都是用来描述RDF数据的。
RDFS/OWL本质上是一些预定义词汇(vocabulary)构成的集合,用于对RDF进行类似的类定义及其属性的定义。
轻量级的模式语言——RDFS
RDFS,即“Resource Description Framework Schema”,是最基础的模式语言。还是以罗纳尔多知识图为例,我们在概念、抽象层面对RDF数据进行定义。下面的RDFS定义了人和地点这两个类,及每个类包含的属性。
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix : <http://www.kg.com/ontology/> .
### 这里我们用词汇rdfs:Class定义了“人”和“地点”这两个类。
:Person rdf:type rdfs:Class.
:Place rdf:type rdfs:Class.
### rdfs当中不区分数据属性和对象属性,词汇rdf:Property定义了属性,即RDF的“边”。
:chineseName rdf:type rdf:Property;
rdfs:domain :Person;
rdfs:range xsd:string .
:career rdf:type rdf:Property;
rdfs:domain :Person;
rdfs:range xsd:string .
:birthDate rdf:type rdf:Property;
rdfs:domain :Person;
rdfs:range xsd:date .
:hasBirthPlace rdf:type rdf:Property;
rdfs:domain :Person;
rdfs:range :Place .
我们这里只介绍RDFS几个比较重要,常用的词汇:
-
rdfs:Class. 用于定义类。
-
rdfs:domain. 用于表示该属性属于哪个类别。
-
rdfs:range. 用于描述该属性的取值类型。
-
rdfs:subClassOf. 用于描述该类的父类。比如,我们可以定义一个运动员类,声明该类是人的子类。
-
rdfs:subProperty. 用于描述该属性的父属性。比如,我们可以定义一个名称属性,声明中文名称和全名是名称的子类。
为了让读者更直观地理解RDF和RDFS/OWL在知识图谱中所代表的层面,我们用下面的图来表示例子中的数据层和模式层。
Data层是我们用RDF对罗纳尔多知识图的具体描述,Vocabulary是我们自己定义的一些词汇(类别,属性),RDF(S)则是预定义词汇。从下到上是一个具体到抽象的过程。
RDFS的扩展——OWL
RDFS本质上是RDF词汇的一个扩展。后来人们发现RDFS的表达能力还是相当有限,因此提出了OWL。我们也可以把OWL当做是RDFS的一个扩展,其添加了额外的预定义词汇。
OWL,即“Web Ontology Language”,语义网技术栈的核心之一。OWL有两个主要的功能:
-
提供快速、灵活的数据建模能力。
-
高效的自动推理。
用OWL对罗纳尔多知识图进行语义层的描述:
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix : <http://www.kg.com/ontology/> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
### 这里我们用词汇owl:Class定义了“人”和“地点”这两个类。
:Person rdf:type owl:Class.
:Place rdf:type owl:Class.
### owl区分数据属性和对象属性(对象属性表示实体和实体之间的关系)。词汇owl:DatatypeProperty定义了数据属性,owl:ObjectProperty定义了对象属性。
:chineseName rdf:type owl:DatatypeProperty;
rdfs:domain :Person;
rdfs:range xsd:string .
:hasBirthPlace rdf:type owl:ObjectProperty;
rdfs:domain :Person;
rdfs:range :Place .
我们这里简单介绍一下常用的词汇:
描述属性特征的词汇
-
owl:TransitiveProperty. 表示该属性具有传递性质。例如,我们定义“位于”是具有传递性的属性,若A位于B,B位于C,那么A肯定位于C。
-
owl:SymmetricProperty. 表示该属性具有对称性。例如,我们定义“认识”是具有对称性的属性,若A认识B,那么B肯定认识A。
-
owl:FunctionalProperty. 表示该属性取值的唯一性。 例如,我们定义“母亲”是具有唯一性的属性,若A的母亲是B,在其他地方我们得知A的母亲是C,那么B和C指的是同一个人。
-
owl:inverseOf. 定义某个属性的相反关系。例如,定义“父母”的相反关系是“子女”,若A是B的父母,那么B肯定是A的子女。
本体映射词汇(Ontology Mapping) -
owl:equivalentClass. 表示某个类和另一个类是相同的。
-
owl:equivalentProperty. 表示某个属性和另一个属性是相同的。
-
owl:sameAs. 表示两个实体是同一个实体。
本体映射主要用在融合多个独立的Ontology(Schema)。举个例子,张三自己构建了一个本体结构,其中定义了Person这样一个类来表示人;李四则在自己构建的本体中定义Human这个类来表示人。当我们融合这两个本体的时候,就可以用到OWL的本体映射词汇。
<http://www.zhangsan.com/ontology/Person> rdf:type owl:Class .
<http://www.lisi.com/ontology/Human> rdf:type owl:Class .
<http://www.zhangsan.com/ontology/Person> owl:equivalentClass <http://www.lisi.com/ontology/Human> .
接下来我们谈一下OWL在推理方面的能力。知识图谱的推理主要分为两类:基于本体的推理和基于规则的推理。
上面所介绍的属性特征词汇其实就创造了对RDF数据进行推理的前提。此时,我们加入支持OWL推理的推理机(reasoner),就能够执行基于本体的推理了。RDFS同样支持推理,由于缺乏丰富的表达能力,推理能力也不强。
比如,其只保存了A的父亲(母亲)是B,但B的子女字段里面没有A,如下表。
如果我们用inversOf来表示hasParent和hasChild互为逆关系,上面的数据可以表示为:
绿色的关系表示是我们RDF数据中真实存在的,红色的关系是推理得到的。