针对之前神一般的钟摆理论,根据实际经验做出一些优化和分析,欢迎大家一起来讨论。
核心指标的优化:
(1)根据格雷厄姆的成长价值公式进行估值,并且根据A股的实际情况或者市场情绪给予一定溢价:8%。 价值=当期(正常)利润×(7.5 + 两倍的预期年增长率),
(2)回测采用30分钟线的数据 回测时间:2011-02-01到2014-12-31 (没有任何大牛市) 起始资金100万 期末资金300万 总收益:200%
回测详情的简单介绍:入选的股票基本上是二线蓝筹股和一下现金流充足的上市公司。总共涉及53个不同的股票。平均持股时间5天左右,胜率60%左右。交易流动性良好。(仅存在停牌造成的影响) 对投资结果的感悟:在没有牛市的情况下,投资必须谨慎乐观。市场总是充满机会又无处不是陷阱。普通散户必须在量化了风险和收益之后才能果断进场。没事可以天天盯盘,培养自己的盘感。但是!!!交易必须三思而后行。不求多,但求准;无需对各种利空,利好的消息草木皆兵,但务必戒贪;不必相信权威,但切忌不能心存侥幸。股市有涨有跌,淡定持股,开心享受福利收益。恒心加一颗平常心,三年照样获得2倍的资产增值。
import numpy as np
start = '2011-02-01'
end = '2014-12-31'
benchmark = 'HS300'
commission = Commission(buycost=0.0008, sellcost=0.0018)
universe = set_universe('HS300',date=end)
capital_base = 1000000
freq = 'm'
refresh_rate = 30
max_percent_of_a_stock = 0.9
def initialize(account):
pass
def handle_data(account):
global max_percent_of_a_stock
buylist = []
selist = []
current_date = account.current_date
current_date = current_date.strftime('%Y%m%d')
overflow = 0.08
spread_rate = dict(spreadRateByIntrinsicValue(account, overflow=overflow, precedingDate=True))
referencePortfolioValue = account.referencePortfolioValue
stock_set_for_duotou = []
stock_set_for_duotou.extend(account.avail_secpos.keys())
stock_set_for_duotou.extend(spread_rate.keys())
stock_set_for_duotou = list(set(stock_set_for_duotou))
duotou_5_10_Map = duotou_5_10(current_date, stock_set_for_duotou, precedingDate=True)
isButtom_Map = isButtom(current_date, stock_set_for_duotou, precedingDate=True, downPercent=0.3)
for stock in account.avail_secpos.keys():
if stock not in spread_rate and not duotou_5_10_Map.get(stock, False):
selist.append(stock)
for stock in selist:
sell_value = account.referencePrice[stock]*account.valid_secpos[stock]
order_to(stock, 0)
for stock in spread_rate.keys():
if stock not in account.valid_secpos:
buylist.append(stock)
for stock in buylist:
if duotou_5_10_Map.get(stock, False) or isButtom_Map.get(stock, False):
buy_value = min(referencePortfolioValue*max_percent_of_a_stock, account.cash/len(buylist))
if buy_value/referencePortfolioValue >= 0.0001:
order_pct(stock, buy_value/referencePortfolioValue)
def preceding_date(date):
cal = DataAPI.TradeCalGet(exchangeCD=u"XSHG",beginDate='20110101',endDate=date,field=['calendarDate','isOpen'],pandas="1")
cal = cal[cal['isOpen']==1]
date = cal['calendarDate'].values[-2].replace('-','')
return date
def duotou_5_10(date, stockList, precedingDate=True):
if precedingDate:
date = preceding_date(date)
duotou = {}
if stockList is None or len(stockList) == 0:
return duotou
kLine = DataAPI.MktStockFactorsOneDayGet(tradeDate=date,secID=stockList,field=['secID','MA5','MA10'],pandas="1")
kLine = kLine.dropna()
for stock, ma5, ma10 in zip(kLine['secID'].values, kLine['MA5'].values, kLine['MA10'].values):
if ma5 > ma10:
duotou[stock] = True
else:
duotou[stock] = False
return duotou
def spreadRateByIntrinsicValue(account, overflow=0.0, precedingDate=True):
stock_list = account.universe
current_date = account.current_date
date = current_date.strftime('%Y%m%d')
if precedingDate:
date = preceding_date(date)
eq_EPS_EGRO = DataAPI.MktStockFactorsOneDayGet(tradeDate=date,secID=stock_list,field=['secID','EPS','EGRO'],pandas="1")
eq_EPS_EGRO['Value'] = eq_EPS_EGRO['EPS']*(7.5+2*eq_EPS_EGRO['EGRO']/5)
eq_EPS_EGRO = eq_EPS_EGRO.dropna()
spread_rate = []
for stock, intrinsic_value in zip(eq_EPS_EGRO['secID'].values, eq_EPS_EGRO['Value'].values):
intrinsic_value = intrinsic_value*(1+overflow)
reference_price = account.referencePrice[stock]
if reference_price > 0 and reference_price < intrinsic_value:
spread_rate.append((stock, (intrinsic_value-reference_price)/reference_price))
return sorted(spread_rate, key=lambda k: k[-1], reverse=True)
def isButtom(date, stockList, precedingDate=True, downPercent=0.2):
cal = DataAPI.TradeCalGet(exchangeCD=u"XSHG",beginDate='20110101',endDate=date,field=u"prevTradeDate",pandas="1")
daysAhead = cal['prevTradeDate'].values[-20].replace('-','')
if precedingDate:
date = cal['prevTradeDate'].values[-1].replace('-','')
rs = {}
if stockList is None or len(stockList) == 0:
return rs
dayInfo = DataAPI.MktEqudAdjGet(secID=stockList, beginDate=daysAhead, endDate=date ,field=['secID', 'openPrice', 'closePrice', 'preClosePrice'],pandas="1")
dayInfo.dropna()
for stock in stockList:
stockDayInfo = dayInfo[dayInfo['secID']==stock]
closePrices = stockDayInfo['closePrice'].values
ma5 = np.mean(closePrices[-5:])
ma10 = np.mean(closePrices[-10:])
closePrice = closePrices[-1]
maxClosePrice = np.max(closePrices)
openPrice = stockDayInfo['openPrice'].values[-1]
preClosePrice = stockDayInfo['preClosePrice'].values[-1]
if (maxClosePrice-closePrice)/maxClosePrice > downPercent and closePrice < ma5 and ma5 < ma10 and (closePrice > openPrice or abs(closePrice-openPrice)/openPrice < 0.02) and abs(closePrice-preClosePrice)/preClosePrice<0.07:
rs[stock] = True
else:
rs[stock] = False
return rs