- JDK8的重要新特性之一——Lambda表达式
JDK 8 之前,java不支持函数式编程的。函数编程,即可理解是将一个函数(也称为“行为”)作为一个参数进行传递。通常我们提及得更多的是面向对象编程,面向对象编程是对数据的抽象(各种各样的POJO类),而函数式编程则是对行为的抽象(将行为作为一个参数进行传递)。在JavaScript中这是很常见的一个语法特性,但在Java中将一个函数作为参数传递这却行不通,好在JDK8的出现打破了Java的这一限制。 - Lambda表达式一共有三部分组成:
能够接收Lambda表达式的参数类型,是一个只包含一个方法的接口。
只包含一个方法的接口称之为“函数接口”。Runnable接口只包含一个方法,所以它被称为“函数接口”,所以它可以使用Lambad表达式来代替匿名内部类。根据这个规则,我们试着来写一个函数接口,并使用Lambda表达式作为参数传递。
以下是lambda表达式的重要特征:
ambda 表达式的语法格式如下:
(parameters) -> expression
或
(parameters) ->{ statements; }
**可选类型声明:**不需要声明参数类型,编译器可以统一识别参数值。
可选的参数圆括号:一个参数无需定义圆括号,但多个参数需要定义圆括号。
可选的大括号:如果主体包含了一个语句,就不需要使用大括号。
可选的返回关键字:如果主体只有一个表达式返回值则编译器会自动返回值,大括号需要指定明表达式返回了一个数值。
- Lambda 表达式的简单例子:
// 1. 不需要参数,返回值为 5
() -> 5
// 2. 接收一个参数(数字类型),返回其2倍的值
x -> 2 * x
// 3. 接受2个参数(数字),并返回他们的差值
(x, y) -> x – y
// 4. 接收2个int型整数,返回他们的和
(int x, int y) -> x + y
// 5. 接受一个 string 对象,并在控制台打印,不返回任何值(看起来像是返回void)
(String s) -> System.out.print(s)
public class Java8Tester {
public static void main(String args[]){
Java8Tester tester = new Java8Tester();
// 类型声明
MathOperation addition = (int a, int b) -> a + b;
// 不用类型声明
MathOperation subtraction = (a, b) -> a - b;
// 大括号中的返回语句
MathOperation multiplication = (int a, int b) -> { return a * b; };
// 没有大括号及返回语句
MathOperation division = (int a, int b) -> a / b;
System.out.println("10 + 5 = " + tester.operate(10, 5, addition));
System.out.println("10 - 5 = " + tester.operate(10, 5, subtraction));
System.out.println("10 x 5 = " + tester.operate(10, 5, multiplication));
System.out.println("10 / 5 = " + tester.operate(10, 5, division));
// 不用括号
GreetingService greetService1 = message ->
System.out.println("Hello " + message);
// 用括号
GreetingService greetService2 = (message) ->
System.out.println("Hello " + message);
greetService1.sayMessage("Runoob");
greetService2.sayMessage("Google");
}
interface MathOperation {
int operation(int a, int b);
}
interface GreetingService {
void sayMessage(String message);
}
private int operate(int a, int b, MathOperation mathOperation){
return mathOperation.operation(a, b);
}
}
- 使用 Lambda 表达式需要注意以下两点:
Lambda 表达式主要用来定义行内执行的方法类型接口,例如,一个简单方法接口。
在上面例子中,我们使用各种类型的Lambda表达式来定义MathOperation接口的方法。然后我们定义了sayMessage的执行。
Lambda 表达式免去了使用匿名方法的麻烦,并且给予Java简单但是强大的函数化的编程能力。
- 变量作用域
lambda 表达式只能引用标记了 final 的外层局部变量,这就是说不能在 lambda 内部修改定义在域外的局部变量,否则会编译错误。
我们也可以直接在 lambda 表达式中访问外层的局部变量:
public class Java8Tester {
public static void main(String args[]) {
final int num = 1;
Converter<Integer, String> s = (param) -> System.out.println(String.valueOf(param + num));
s.convert(2); // 输出结果为 3
}
public interface Converter<T1, T2> {
void convert(int i);
}
}
- lambda 表达式的局部变量可以不用声明为 final,但是必须不可被后面的代码修改(即隐性的具有 final 的语义)
int num = 1;
Converter<Integer, String> s = (param) -> System.out.println(String.valueOf(param + num));
s.convert(2);
num = 5;
//报错信息:Local variable num defined in an enclosing scope must be final or effectively
final
- 在 Lambda 表达式当中不允许声明一个与局部变量同名的参数或者局部变量。
String first = "";
Comparator<String> comparator = (first, second) -> Integer.compare(first.length(), second.length()); //编译会出错
- Lambda表达式本质上是一个匿名方法。
public int add(int x, int y)
{
return x + y;
}
----------------------------------------------
/** 转换成 Lambda */
(int x, int y) -> x + y;
----------------------------------------------
// 参数类型也可以省略,java 编译器可以根据上下文推断。
(x, y) -> x + y; //返回两数之和
或者
(x, y) -> { return x + y; } //显式指明返回值
- Lambda 表达式的类型
Lambda表达式可以被当做是一个Object。Lambda表达式的类型,叫做“目标类型(target type)”。Lambda表达式的目标类型是**“函数接口**(functional interface)”,
定义是:一个接口,如果只有一个显式声明的抽象方法,那么它就是一个函数接口。一般用@FunctionalInterface 标注出来(也可以不标)。
@FunctionalInterface
public interface Runnable { void run(); }
public interface Callable<V> { V call() throws Exception; }
public interface ActionListener { void actionPerformed(ActionEvent e); }
public interface Comparator<T> { int compare(T o1, T o2); boolean equals(Object obj); }
最后这个Comparator接口。它里面声明了两个方法,貌似不符合函数接口的定义,但它的确是函数接口。这是因为equals方法是Object的,所有的接口都会声明Object的public方法——虽然大多是隐式的。所以,Comparator显式的声明了equals不影响它依然是个函数接口。
Runnable r1 = () -> {System.out.println("Hello Lambda!");};
然后再赋值给一个Object:
Object obj = r1;
但却不能这样干:
Object obj = () -> {System.out.println("Hello Lambda!");}; // ERROR! Object is not a functional interface!
必须显式的转型成一个函数接口才可以:
Object o = (Runnable) () -> { System.out.println("hi"); }; // correct
一个λ表达式只有在转型成一个函数接口后才能被当做Object使用。所以下面这句也不能编译:
System.out.println( () -> {} ); //错误! 目标类型不明
必须先转型:
System.out.println( (Runnable)() -> {} ); // 正确
- Lambda表达式与集合类批处理操作(或者叫块操作)
集合类的批处理操作API的目的是实现集合类的“内部迭代”,并期望充分利用现代多核CPU进行并行计算。
Java8之前集合类的迭代(Iteration)都是外部的,即客户代码。而内部迭代意味着改由Java类库来进行迭代,而不是客户代码。
for(Object o: list) { // 外部迭代
System.out.println(o);
}
可以写成:
list.forEach(o -> {System.out.println(o);}); //forEach函数实现内部迭代
--------------------------------------------
// 嵌套的λ表达式
Callable<Runnable> c1 = () -> () -> { System.out.println("Nested lambda"); };
c1.call().run();
// 用在条件表达式中
Callable<Integer> c2 = true ? (() -> 42) : (() -> 24);
System.out.println(c2.call());
// 定义一个递归函数
private UnaryOperator<Integer> factorial = i -> { return i == 0 ? 1 : i * factorial.apply( i - 1 ); };
...
System.out.println(factorial.apply(3));
- 方法引用(Method reference)
任何一个λ表达式都可以代表某个函数接口的唯一方法的匿名描述符。我们也可以使用某个类的某个具体方法来代表这个描述符,叫做方法引用。例如:
Integer::parseInt //静态方法引用
System.out::print //实例方法引用
Person::new //构造器引用
使用方法引用代替lambda 表达式:
//c1 与 c2 是一样的(静态方法引用)
Comparator<Integer> c2 = (x, y) -> Integer.compare(x, y);
Comparator<Integer> c1 = Integer::compare;
persons.forEach(e -> System.out.println(e));
persons.forEach(System.out::println);
persons.forEach(person -> person.eat());
persons.forEach(Person::eat);
//下面两句是一样的(构造器引用)
strList.stream().map(s -> new Integer(s));
strList.stream().map(Integer::new);
//distinctPrimarySum方法可以改写如下:
public void distinctPrimarySum(String... numbers) {
List<String> l = Arrays.asList(numbers);
int sum = l.stream().map(Integer::new).filter(Primes::isPrime).distinct().sum();
System.out.println("distinctPrimarySum result is: " + sum);
}
//其它的方法引用:
super::methName //引用某个对象的父类方法
TypeName[]::new //引用一个数组的构造器