大津法代码
int otsuThreshold(IplImage* img)
{
int T = 0;//阈值
int height = img->height;
int width = img->width;
int step = img->widthStep;
int channels = img->nChannels;
uchar* data = (uchar*)img->imageData;
double gSum0;//第一类灰度总值
double gSum1;//第二类灰度总值
double N0 = 0;//前景像素数
double N1 = 0;//背景像素数
double u0 = 0;//前景像素平均灰度
double u1 = 0;//背景像素平均灰度
double w0 = 0;//前景像素点数占整幅图像的比例为ω0
double w1 = 0;//背景像素点数占整幅图像的比例为ω1
double u = 0;//总平均灰度
double tempg = -1;//临时类间方差
double g = -1;//类间方差
double Histogram[256]={0};// = new double[256];//灰度直方图
double N = width*height;//总像素数
for(int i=0;i<height;i++)
{//计算直方图
for(int j=0;j<width;j++)
{
double temp =data[i*step + j * 3] * 0.114 + data[i*step + j * 3+1] * 0.587 + data[i*step + j * 3+2] * 0.299;
temp = temp<0? 0:temp;
temp = temp>255? 255:temp;
Histogram[(int)temp]++;
}
}
//计算阈值
for (int i = 0;i<256;i++)
{
gSum0 = 0;
gSum1 = 0;
N0 += Histogram[i];
N1 = N-N0;
if(0==N1)break;//当出现前景无像素点时,跳出循环
w0 = N0/N;
w1 = 1-w0;
for (int j = 0;j<=i;j++)
{
gSum0 += j*Histogram[j];
}
u0 = gSum0/N0;
for(int k = i+1;k<256;k++)
{
gSum1 += k*Histogram[k];
}
u1 = gSum1/N1;
//u = w0*u0 + w1*u1;
g = w0*w1*(u0-u1)*(u0-u1);
if (tempg<g)
{
tempg = g;
T = i;
}
}
return T;
}
int otsu(Mat image)
{
int width = image.cols;
int height = image.rows;
int x = 0, y = 0;
long int pixelCount[256];
float pixelPro[256];
int i, j, pixelSum = width * height, threshold = 0, threshold1;
uchar* data = (uchar*)image.data;
//初始化
for (i = 0; i < 256; i++)
{
pixelCount[i] = 0;
pixelPro[i] = 0;
}
//统计灰度级中每个像素在整幅图像中的个数
for (i = y; i < height; i++)
{
for (j = x; j<width; j++)
{
pixelCount[data[i * image.step + j]]++;
}
}
//计算每个像素在整幅图像中的比例
for (i = 0; i < 256; i++)
{
pixelPro[i] = (float)(pixelCount[i]) / (float)(pixelSum);
}
//经典ostu算法,得到前景和背景的分割
//遍历灰度级[0,255],计算出方差最大的灰度值,为最佳阈值
float w0, w1, u0tmp, u1tmp, u0, u1, u, deltaTmp, deltaMax = 0,deltaMax1;
for (i = 0; i < 256; i++)
{
w0 = w1 = u0tmp = u1tmp = u0 = u1 = u = deltaTmp = 0;
for (j = 0; j < 256; j++)
{
if (j <= i) //背景部分
{
//以i为阈值分类,第一类总的概率
w0 += pixelPro[j];
u0tmp += j * pixelPro[j];
}
else //前景部分
{
//以i为阈值分类,第二类总的概率
w1 += pixelPro[j];
u1tmp += j * pixelPro[j];
}
}
u0 = u0tmp / w0; //第一类的平均灰度
u1 = u1tmp / w1; //第二类的平均灰度
u = u0tmp + u1tmp; //整幅图像的平均灰度
//计算类间方差
deltaTmp = w0 * (u0 - u)*(u0 - u) + w1 * (u1 - u)*(u1 - u);
//找出最大类间方差以及对应的阈值
if (deltaTmp > deltaMax)
{
deltaMax1 = deltaMax;
deltaMax = deltaTmp;
threshold1= threshold;
threshold = i;
}
}
//返回最佳阈值;
return threshold1;
}