题目链接:https://leetcode.com/problems/maximum-product-subarray/
Find the contiguous subarray within an array (containing at least one number) which has the largest product.
For example, given the array [2,3,-2,4]
,
the contiguous subarray [2,3]
has the largest product = 6
.
思路:因为会有负负得正,正负得负的情况,所以保存每一位的最小值和最大值。而其最小值和最大值与三个状态相关,即上次最大值,上次最小值,当前数。因此状态转移方程为:
minP[i] = min(minP[i-1]*nums[i], maxP[i-1]*nums[i], nums[i]);
maxP[i] = max(minP[i-1]*nums[i], maxP[i-1]*nums[i], nums[i]);
以上状态转移方程记录了当前局部的最大最小值,再用一个值记录全局最大值,每次与局部最大值比较,最后即可得到最大的连续积。
时间复杂度为O(n), 空间复杂度为O(n)。
其实还可以做状态压缩, 也就是将时间复杂度降为O(1).
代码如下:
class Solution {
public:
int maxProduct(vector<int>& nums) {
if(nums.size()==0) return 0;
int len = nums.size(), curMax = 1, curMin = 1, Max = INT_MIN;
for(int i = 0; i < nums.size(); i++)
{
int temMax = max(curMax*nums[i], max(curMin*nums[i], nums[i]));
int temMin = min(curMax*nums[i], min(curMin*nums[i], nums[i]));
Max = max(Max, temMax), curMax = temMax, curMin = temMin;
}
return Max;
}
};