[leetcode] 152. Maximum Product Subarray 解题报告

本文介绍了一种解决LeetCode上最大乘积子数组问题的方法。通过动态规划思想,利用两个变量跟踪当前最大和最小乘积,考虑到负数翻转正负性的特殊情况。最终返回遍历过程中遇到的最大乘积。

题目链接:https://leetcode.com/problems/maximum-product-subarray/

Find the contiguous subarray within an array (containing at least one number) which has the largest product.

For example, given the array [2,3,-2,4],
the contiguous subarray [2,3] has the largest product = 6.


思路:因为会有负负得正,正负得负的情况,所以保存每一位的最小值和最大值。而其最小值和最大值与三个状态相关,即上次最大值,上次最小值,当前数。因此状态转移方程为:

minP[i] = min(minP[i-1]*nums[i], maxP[i-1]*nums[i], nums[i]);

maxP[i] = max(minP[i-1]*nums[i], maxP[i-1]*nums[i], nums[i]);

以上状态转移方程记录了当前局部的最大最小值,再用一个值记录全局最大值,每次与局部最大值比较,最后即可得到最大的连续积。

时间复杂度为O(n), 空间复杂度为O(n)。

其实还可以做状态压缩, 也就是将时间复杂度降为O(1).

代码如下:

class Solution {
public:
    int maxProduct(vector<int>& nums) {
        if(nums.size()==0) return 0;
        int len = nums.size(), curMax = 1, curMin = 1, Max = INT_MIN;
        for(int i = 0; i < nums.size(); i++)
        {
            int temMax = max(curMax*nums[i], max(curMin*nums[i], nums[i]));
            int temMin = min(curMax*nums[i], min(curMin*nums[i], nums[i]));
            Max = max(Max, temMax), curMax = temMax, curMin = temMin;
        }
        return Max;
    }
};


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值