YOLOv11继承自YOLOv8,使同等精度下参数量降低20%。
一、yolo v11核心代码和对应的结构
(1)动态卷积层
def autopad(k, p=None, d=1):
"""自动填充以保持输出形状相同"""
if d > 1:
# 实际的卷积核大小
k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k]
if p is None:
# 自动填充
p = k // 2 if isinstance(k, int) else [x // 2 for x in k]
return p
class DynamicConv(nn.Module):
"""动态卷积层"""
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True, num_experts=4):
super().__init__()
self.conv = nn.Sequential(
DynamicConv_Single(c1, c2, kernel_size=k, stride=s, padding=autopad(k, p, d), dilation=d, groups=g, num_experts=num_experts),
nn.BatchNorm2d(c2),
nn.SiLU() if act else nn.Identity()
)
def forward(self, x):
return self.conv(x)
(2)卷积层
class Conv(nn.Module):
"""卷积层,包含卷积、批归一化和激活函数"""
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=None, groups=1, act=True):
super(Conv, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, autopad(kernel_size, padding), groups=groups, bias=False)
self.bn = nn.BatchNorm2d(out_channels)
self.act = nn.SiLU() if act else nn.Identity() # 使用SiLU激活函数
def forward(self, x):
return self.act(self.bn(self.conv(x)))
(3)Bottleneck结构
class Bottleneck(nn.Module):
"""标准瓶颈模块,包含两个卷积层"""
def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):
super(Bottleneck, self).__init__()
c_ = int(c2 * e) # 隐藏通道数
self.cv1 = Conv(c1, c_, k[0], 1) # 第一个卷积层
self.cv2 = Conv(c_, c2, k[1], 1) # 第二个卷积层
self.add = shortcut and c1 == c2 # 是否使用shortcut连接
def forward(self, x):
"""前向传播,使用shortcut连接"""
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
(4)C2f层
C2f层使用了2个Bottleneck模块,在小网络会使用这个模块。
class C2f(nn.Module):
def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):
"""Initializes a CSP bottleneck with 2 convolutions and n Bottleneck blocks for faster processing."""
super().__init__()
self.c = int(c2 * e) # hidden channels
self.cv1 = Conv(c1, 2 * self.c, 1, 1)
self.cv2 = Conv((2 + n) * self.c, c2, 1) # optional act=FReLU(c2)
self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))
def forward(self, x):
y = list(self.cv1(x).chunk(2, 1))
y.extend(m(y[-1]) for m in self.m)
return self.cv2(torch.cat(y, 1))
def forward_split(self, x):
"""Forward pass using split() instead of chunk()."""
y = self.cv1(x).split((self.c, self.c), 1)
y = [y[0], y[1]]
y.extend(m(y[-1]) for m in self.m)
return self.cv2(torch.cat(y, 1))
(5)C3k层
class C3k(nn.Module):
"""C3k模块,包含多个瓶颈模块"""
def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5, k=3):
super(C3k, self).__init__()
c_ = int(c2 * e) # hidden channels
self.m = nn.Sequential(*(Bottleneck(c1, c2, shortcut, g, k=(k, k), e=e) for _ in range(n))) # 创建n个瓶颈模块
def forward(self, x):
return self.m(x) # 前向传播
(6)C3K2层
实际就使用看2个上面讲的C3K层,在大网络会使用这个模块。
class C3k2(C2f):
def __init__(self, c1, c2, n=1, c3k=False, e=0.5, g=1, shortcut=True):
super().__init__(c1, c2, n, shortcut, g, e)
self.m = nn.ModuleList(
C3k(self.c, self.c, 2, shortcut, g) if c3k else Bottleneck(self.c, self.c, shortcut, g) for _ in range(n)
)
(7)C3k动态卷积
class C3k_DynamicConv(C3k):
"""C3k模块,使用动态卷积"""
def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5, k=3):
super().__init__(c1, c2, n, shortcut, g, e, k)
c_ = int(c2 * e) # 隐藏通道数
self.m = nn.Sequential(*(Bottleneck_DynamicConv(c_, c_, shortcut, g, k=(k, k), e=1.0) for _ in range(n)))
# 创建n个动态卷积瓶颈模块
class C3k2_DynamicConv(C3k2):
"""C3k2模块,使用动态卷积"""
def __init__(self, c1, c2, n=1, c3k=False, e=0.5, g=1, shortcut=True):
super().__init__(c1, c2, n, c3k, e, g, shortcut)
self.m = nn.ModuleList(C3k_DynamicConv(self.c, self.c, 2, shortcut, g) if c3k else Bottleneck_DynamicConv(self.c, self.c, shortcut, g, k=(3, 3), e=1.0) for _ in range(n))
(8)FFN层
(9)PSA层
这些模块负责自注意力(self-attention)和前馈(feed-forward)操作。PSABlock 类实现了神经网络中的位置敏感注意力块。这个类封装了应用多头注意力和前馈神经网络层的功能,并可选地包含快捷连接。
class PSABlock(nn.Module):
def __init__(self, c, attn_ratio=0.5, num_heads=4, shortcut=True) -> None:
super().__init__()
self.attn = Attention(c, attn_ratio=attn_ratio, num_heads=num_heads)
self.ffn = nn.Sequential(Conv(c, c * 2, 1), Conv(c * 2, c, 1, act=False))
self.add = shortcut
def forward(self, x):
x = x + self.attn(x) if self.add else self.attn(x)
x = x + self.ffn(x) if self.add else self.ffn(x)
return x
(10)C2PSA层
- C2PSA模块:这个模块实现了一个带有注意力机制的卷积块,目的是提升特征提取和处理的效果。
-
**注意力机制的卷积块 **:
代码:
class C2PSA(nn.Module):
def __init__(self, c1, c2, n=1, e=0.5):
super().__init__()
assert c1 == c2
self.c = int(c1 * e)
self.cv1 = Conv(c1, 2 * self.c, 1, 1)
self.cv2 = Conv(2 * self.c, c1, 1)
self.m = nn.Sequential(*(PSABlock(self.c, attn_ratio=0.5, num_heads=self.c // 64) for _ in range(n)))
def forward(self, x):
a, b = self.cv1(x).split((self.c, self.c), dim=1)
b = self.m(b)
return self.cv2(torch.cat((a, b), 1))
二、yolo入门实战教程
视频教程点击:《吐血录制,yolo11猫狗实时检测实战项目,从零开始写yolov11代码》,视频全程25分钟,或B站搜“AI莫大猫”。
从零训练自己的数据集。
三、往期回顾
(1)yolo11猫狗实时检测实战项目,从零开始写yolov11代码
(2)yolo实战:从零开始学yolo之yolov1的技术原理
(3)YOLOv1训练过程,新手入门
高清动画,3分钟揭秘神经网络技术原理