/*
poj 2451 Uyuw's Concert - 半平面交
很裸的半平面交
*/
#include<stdio.h>
#include<math.h>
#include <algorithm>
using namespace std;
const double eps=1e-10;
struct point
{
double x,y;
point(){}
point(double a,double b):x(a),y(b){}
}jiao[20000+10];
struct line
{
point s,e;
double angle;
}xian[20000+10];
int n;
int yong;
/
//计算两直线交点,注意事先判断直线是否平行!
//线段交点请另外判线段相交(同时还是要判断是否平行!)
point mo_intersection(point u1,point u2,point v1,point v2)
{
point ret=u1;
double t=((u1.x-v1.x)*(v1.y-v2.y)-(u1.y-v1.y)*(v1.x-v2.x))
/((u1.x-u2.x)*(v1.y-v2.y)-(u1.y-u2.y)*(v1.x-v2.x));
ret.x+=(u2.x-u1.x)*t;
ret.y+=(u2.y-u1.y)*t;
return ret;
}
double mo_xmult(point p2,point p0,point p1)//p1在p2左返回负,在右边返回正
{
return (p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y);
}
//求多边形面积
double mo_area_polygon(point *dian,int n)
{
int i;
point yuan;
yuan.x=yuan.y=0;
double ret=0;
for(i=0;i<n;++i)
{
ret+=mo_xmult(dian[(i+1)%n],yuan,dian[i]);
}
if(ret<0) ret=-ret;
return ret/2;
}
bool mo_ee(double x,double y)
{
double ret=x-y;
if(ret<0) ret=-ret;
if(ret<eps) return 1;
return 0;
}
bool mo_gg(double x,double y) { return x > y + eps;} // x > y
bool mo_ll(double x,double y) { return x < y - eps;} // x < y
bool mo_ge(double x,double y) { return x > y - eps;} // x >= y
bool mo_le(double x,double y) { return x < y + eps;} // x <= y
bool mo_HPI_cmp(const line& a,const line& b)
{
if(mo_ee(a.angle,b.angle))
{
return mo_gg( mo_xmult(b.e,a.s,b.s),0);
}else
{
return mo_ll(a.angle,b.angle);
}
}
int mo_HPI_dq[20000+10];
bool mo_HPI_isout(line cur,line top,line top_1)
{
point jiao=mo_intersection(top.s,top.e,top_1.s,top_1.e);
return mo_ll( mo_xmult(cur.e,jiao,cur.s),0);
}
int mo_HalfPlaneIntersect(line *xian,int n,point *jiao)
{
int i,j,ret=0;
sort(xian,xian+n,mo_HPI_cmp);
for (i = 0, j = 0; i < n; i++)
{
if (mo_gg(xian[i].angle,xian[j].angle)) //极角相同时,只保留最靠里面的那条
{
xian[++j] = xian[i];
}
}
n=j+1;
mo_HPI_dq[0]=0;
mo_HPI_dq[1]=1;
int top=1,bot=0;
for (i = 2; i < n; i++) {
//当栈顶的两条直线交点在当前半平面外部时,弹栈
while (top > bot && mo_HPI_isout(xian[i], xian[mo_HPI_dq[top]], xian[mo_HPI_dq[top-1]]))
{
top--;
}
/*由于求的是一个凸多边形,所以当半平面转过接近一圈时,某个半平面满足上一个while的条件后,
它又会影响到底部的两条直线,当底部的两条直线的交点,在当前的半平面外部时,底部弹栈
*/
while (top > bot && mo_HPI_isout(xian[i], xian[mo_HPI_dq[bot]], xian[mo_HPI_dq[bot+1]]))
{
bot++;
}
mo_HPI_dq[++top] = i; //当前半平面入栈
}
//当最顶部的两条直线的交点不在最底部的半平面内时,顶部的那个半平面是多余的,顶部弹栈
while (top > bot && mo_HPI_isout(xian[mo_HPI_dq[bot]], xian[mo_HPI_dq[top]], xian[mo_HPI_dq[top-1]])) top--;
//当最底部的两条直线的交点不在最顶部的半平面内时,底部的那个半平面是多余的,底部弹栈
while (top > bot && mo_HPI_isout(xian[mo_HPI_dq[top]], xian[mo_HPI_dq[bot]], xian[mo_HPI_dq[bot+1]])) bot++;
mo_HPI_dq[++top] = mo_HPI_dq[bot]; //将最底部的半平面放到最顶部来,方便下面求顶点
for (ret = 0, i = bot; i < top; i++, ret++)
{
jiao[ret]=mo_intersection(xian[mo_HPI_dq[i+1]].s,xian[mo_HPI_dq[i+1]].e,xian[mo_HPI_dq[i]].s,xian[mo_HPI_dq[i]].e);
}
return ret;
}
/
void addl(point a,point b)
{
xian[yong].s=a;
xian[yong].e=b;
xian[yong].angle=atan2(b.y-a.y,b.x-a.x);
yong++;
}
int main()
{
int i;
while(scanf("%d",&n)!=EOF)
{
point a,b;
yong=0;
for(i=0;i<n;++i)
{
scanf("%lf%lf%lf%lf",&a.x,&a.y,&b.x,&b.y);
addl(a,b);
}
addl(point(0,0),point(10000,0));
addl(point(10000,0),point(10000,10000));
addl(point(10000,10000),point(0,10000));
addl(point(0,10000),point(0,0));
int ret=mo_HalfPlaneIntersect(xian,n+4,jiao);
double area=mo_area_polygon(jiao,ret);
printf("%.1lf\n",area);
}
return 0;
}