server.c
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <arpa/inet.h>
#include <pthread.h>
#include "threadpool.h"
// 信息结构体
struct SockInfo
{
struct sockaddr_in addr;
int fd;
};
typedef struct PoolInfo
{
ThreadPool *p;
int fd;
} PoolInfo;
void working(void *arg);
void acceptConn(void *arg);
int main()
{
// 1.创建监听的套接字
int fd = socket(AF_INET, SOCK_STREAM, 0);
if (fd == -1)
{
perror("socket");
return -1;
}
// 2.绑定本地的IP port
struct sockaddr_in saddr;
saddr.sin_family = AF_INET;
saddr.sin_port = htons(9999);
saddr.sin_addr.s_addr = INADDR_ANY; // 0 = 0.0.0.0 对于0来说,大端和小端是没有区别的
int ret = bind(fd, (struct sockaddr *)&saddr, sizeof(saddr));
if (ret == -1)
{
perror("bind");
return -1;
}
// 3.设置监听
ret = listen(fd, 128);
if (ret == -1)
{
perror("listen");
return -1;
}
// 创建线程池
ThreadPool *pool = threadPoolCreate(3, 8, 100);
PoolInfo *info = (PoolInfo *)malloc(sizeof(PoolInfo));
info->p = pool;
info->fd = fd;
threadPoolAdd(pool, acceptConn, info);
pthread_exit(NULL);//主线程退出了,不会影响线程池里所有的线程运行
return 0;
}
void acceptConn(void *arg)
{
PoolInfo *poolInfo = (PoolInfo *)arg;
// 4.阻塞并等待客户端的连接
int addrlen = sizeof(struct sockaddr_in);
while (1)
{
struct SockInfo *pinfo;
pinfo = (struct SockInfo *)malloc(sizeof(struct SockInfo));
pinfo->fd = accept(poolInfo->fd, (struct sockaddr *)&pinfo->addr, &addrlen); // caddr ip是大端,要看192的,需转换成小端
if (pinfo->fd == -1)
{
perror("accept");
break;
}
// 添加通信的任务
threadPoolAdd(poolInfo->p, working, pinfo);
}
close(poolInfo->fd);
}
void working(void *arg)
{
struct SockInfo *pinfo = (struct SockInfo *)arg;
// 连接建立成功,打印客户端的IP和端口信息
char ip[32];
printf("客户端的IP:%s,端口:%d\n",
inet_ntop(AF_INET, &pinfo->addr.sin_addr.s_addr, ip, sizeof(ip)),
ntohs(pinfo->addr.sin_port));
// 5.通信
while (1)
{
// 接收数据
char buff[1024];
int len = recv(pinfo->fd, buff, sizeof(buff), 0);
if (len > 0)
{
printf("client say: %s\n", buff);
send(pinfo->fd, buff, len, 0);
}
else if (len == 0)
{
printf("客户端已经断开了连接...\n");
break;
}
else
{
perror("recv");
break;
}
}
// 关闭文件描述符
close(pinfo->fd);
}
client.c
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <arpa/inet.h>
int main()
{
// 1.创建通信的套接字
int fd = socket(AF_INET, SOCK_STREAM, 0);
if (fd == -1)
{
perror("socket");
return -1;
}
// 2.绑定服务器的IP port
struct sockaddr_in saddr;
saddr.sin_family = AF_INET;
saddr.sin_port = htons(9999);
inet_pton(AF_INET, "192.168.31.128", &saddr.sin_addr.s_addr); // 绑定服务器的ip
int ret = connect(fd, (struct sockadddr *)&saddr, sizeof(saddr));
if (ret == -1)
{
perror("connect");
return -1;
}
// 3.通信
int number = 0;
while (1)
{
// 发送数据
char buff[1024];
sprintf(buff, "你好,hello,world,%d...\n", number++);
send(fd, buff, strlen(buff) + 1, 0);
//接收数据
memset(buff,0,sizeof(buff));
int len = recv(fd, buff, sizeof(buff), 0);
if (len > 0)
{
printf("server say: %s\n", buff);
}
else if (len == 0)
{
printf("服务器已经断开了连接...\n");
break;
}
else
{
perror("recv");
break;
}
sleep(1);
}
// 关闭文件描述符
close(fd);
return 0;
}
threadpool.h
#ifndef _THREADPOOL_H
#define _THREADPOOL_H
typedef struct ThreadPool ThreadPool;
// 创建线程池并初始化
ThreadPool *threadPoolCreate(int min, int max, int queueSize);
// 销毁线程池
int threadPoolDestroy(ThreadPool* pool);
// 给线程池添加任务
void threadPoolAdd(ThreadPool* pool, void(*func)(void*), void* arg);
// 获取线程池中工作的线程的个数
int threadPoolBusyNum(ThreadPool* pool);
// 获取线程池中活着的线程的个数
int threadPoolAliveNum(ThreadPool* pool);
//
// 工作的线程(消费者线程)任务函数
void* worker(void* arg);
// 管理者线程任务函数
void* manager(void* arg);
// 单个线程退出
void threadExit(ThreadPool* pool);
#endif // _THREADPOOL_H
threadpool.c
#include "threadpool.h"
#include <pthread.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
const int NUMBER = 2;
// 任务结构体
typedef struct Task
{
void (*function)(void *arg);
void *arg;
} Task;
// 线程池结构体
struct ThreadPool
{
// 任务队列
Task *taskQ;
int queueCapacity; // 容量
int queueSize; // 当前任务个数
int queueFront; // 队头 -> 取数据
int queueRear; // 队尾 -> 放数据
pthread_t managerID; // 管理者线程ID
pthread_t *threadIDs; // 工作的线程ID
int minNum; // 最小线程数量
int maxNum; // 最大线程数量
int busyNum; // 忙的线程的个数
int liveNum; // 存活的线程的个数
int exitNum; // 要销毁的线程个数
pthread_mutex_t mutexPool; // 锁整个的线程池
pthread_mutex_t mutexBusy; // 锁busyNum变量
pthread_cond_t notFull; // 任务队列是不是满了
pthread_cond_t notEmpty; // 任务队列是不是空了
int shutdown; // 是不是要销毁线程池, 销毁为1, 不销毁为0
};
ThreadPool *threadPoolCreate(int min, int max, int queueSize)
{
ThreadPool *pool = (ThreadPool *)malloc(sizeof(ThreadPool));
do
{
if (pool == NULL)
{
printf("malloc threadpool fail...\n");
break;
}
pool->threadIDs = (pthread_t *)malloc(sizeof(pthread_t) * max);
if (pool->threadIDs == NULL)
{
printf("malloc threadIDs fail...\n");
break;
}
memset(pool->threadIDs, 0, sizeof(pthread_t) * max);
pool->minNum = min;
pool->maxNum = max;
pool->busyNum = 0;
pool->liveNum = min; // 和最小个数相等
pool->exitNum = 0;
if (pthread_mutex_init(&pool->mutexPool, NULL) != 0 ||
pthread_mutex_init(&pool->mutexBusy, NULL) != 0 ||
pthread_cond_init(&pool->notEmpty, NULL) != 0 ||
pthread_cond_init(&pool->notFull, NULL) != 0)
{
printf("mutex or condition init fail...\n");
break;
}
// 任务队列
pool->taskQ = (Task *)malloc(sizeof(Task) * queueSize);
pool->queueCapacity = queueSize;
pool->queueSize = 0;
pool->queueFront = 0;
pool->queueRear = 0;
pool->shutdown = 0;
// 创建线程
pthread_create(&pool->managerID, NULL, manager, pool);
for (int i = 0; i < min; ++i)
{
pthread_create(&pool->threadIDs[i], NULL, worker, pool);
}
return pool;
} while (0);
// 释放资源
if (pool && pool->threadIDs)
free(pool->threadIDs);
if (pool && pool->taskQ)
free(pool->taskQ);
if (pool)
free(pool);
return NULL;
}
int threadPoolDestroy(ThreadPool *pool)
{
if (pool == NULL)
{
return -1;
}
// 关闭线程池
pool->shutdown = 1;
// 阻塞回收管理者线程
pthread_join(pool->managerID, NULL);
// 唤醒阻塞的消费者线程
for (int i = 0; i < pool->liveNum; ++i)
{
pthread_cond_signal(&pool->notEmpty);
}
// 释放堆内存
if (pool->taskQ)
{
free(pool->taskQ);
}
if (pool->threadIDs)
{
free(pool->threadIDs);
}
pthread_mutex_destroy(&pool->mutexPool);
pthread_mutex_destroy(&pool->mutexBusy);
pthread_cond_destroy(&pool->notEmpty);
pthread_cond_destroy(&pool->notFull);
free(pool);
pool = NULL;
return 0;
}
void threadPoolAdd(ThreadPool *pool, void (*func)(void *), void *arg)
{
pthread_mutex_lock(&pool->mutexPool);
while (pool->queueSize == pool->queueCapacity && !pool->shutdown)
{
// 阻塞生产者线程
pthread_cond_wait(&pool->notFull, &pool->mutexPool);
}
if (pool->shutdown)
{
pthread_mutex_unlock(&pool->mutexPool);
return;
}
// 添加任务
pool->taskQ[pool->queueRear].function = func;
pool->taskQ[pool->queueRear].arg = arg;
pool->queueRear = (pool->queueRear + 1) % pool->queueCapacity;
pool->queueSize++;
pthread_cond_signal(&pool->notEmpty);
pthread_mutex_unlock(&pool->mutexPool);
}
int threadPoolBusyNum(ThreadPool *pool)
{
pthread_mutex_lock(&pool->mutexBusy);
int busyNum = pool->busyNum;
pthread_mutex_unlock(&pool->mutexBusy);
return busyNum;
}
int threadPoolAliveNum(ThreadPool *pool)
{
pthread_mutex_lock(&pool->mutexPool);
int aliveNum = pool->liveNum;
pthread_mutex_unlock(&pool->mutexPool);
return aliveNum;
}
void *worker(void *arg)
{
ThreadPool *pool = (ThreadPool *)arg;
while (1)
{
pthread_mutex_lock(&pool->mutexPool);
// 当前任务队列是否为空
while (pool->queueSize == 0 && !pool->shutdown)
{
// 阻塞工作线程
pthread_cond_wait(&pool->notEmpty, &pool->mutexPool);
// 判断是不是要销毁线程
if (pool->exitNum > 0)
{
pool->exitNum--;
if (pool->liveNum > pool->minNum)
{
pool->liveNum--;
pthread_mutex_unlock(&pool->mutexPool);
threadExit(pool);
}
}
}
// 判断线程池是否被关闭了
if (pool->shutdown)
{
pthread_mutex_unlock(&pool->mutexPool);
threadExit(pool);
}
// 从任务队列中取出一个任务
Task task;
task.function = pool->taskQ[pool->queueFront].function;
task.arg = pool->taskQ[pool->queueFront].arg;
// 移动头结点
pool->queueFront = (pool->queueFront + 1) % pool->queueCapacity;
pool->queueSize--;
// 解锁
pthread_cond_signal(&pool->notFull);
pthread_mutex_unlock(&pool->mutexPool);
printf("thread %ld start working...\n", pthread_self());
pthread_mutex_lock(&pool->mutexBusy);
pool->busyNum++;
pthread_mutex_unlock(&pool->mutexBusy);
task.function(task.arg);
free(task.arg);
task.arg = NULL;
printf("thread %ld end working...\n", pthread_self());
pthread_mutex_lock(&pool->mutexBusy);
pool->busyNum--;
pthread_mutex_unlock(&pool->mutexBusy);
}
return NULL;
}
void *manager(void *arg)
{
ThreadPool *pool = (ThreadPool *)arg;
while (!pool->shutdown)
{
// 每隔3s检测一次
sleep(3);
// 取出线程池中任务的数量和当前线程的数量
pthread_mutex_lock(&pool->mutexPool);
int queueSize = pool->queueSize;
int liveNum = pool->liveNum;
pthread_mutex_unlock(&pool->mutexPool);
// 取出忙的线程的数量
pthread_mutex_lock(&pool->mutexBusy);
int busyNum = pool->busyNum;
pthread_mutex_unlock(&pool->mutexBusy);
// 添加线程
// 任务的个数>存活的线程个数 && 存活的线程数<最大线程数
if (queueSize > liveNum - busyNum && liveNum < pool->maxNum)
{
pthread_mutex_lock(&pool->mutexPool);
int counter = 0;
for (int i = 0; i < pool->maxNum && counter < NUMBER && pool->liveNum < pool->maxNum; ++i)
{
if (pool->threadIDs[i] == 0)
{
pthread_create(&pool->threadIDs[i], NULL, worker, pool);
counter++;
pool->liveNum++;
}
}
pthread_mutex_unlock(&pool->mutexPool);
}
// 销毁线程
// 忙的线程*2 < 存活的线程数 && 存活的线程>最小线程数
if (busyNum * 2 < liveNum && liveNum > pool->minNum)
{
pthread_mutex_lock(&pool->mutexPool);
pool->exitNum = NUMBER;
pthread_mutex_unlock(&pool->mutexPool);
// 让工作的线程自杀
for (int i = 0; i < NUMBER; ++i)
{
pthread_cond_signal(&pool->notEmpty);
}
}
}
return NULL;
}
void threadExit(ThreadPool *pool)
{
pthread_t tid = pthread_self();
for (int i = 0; i < pool->maxNum; ++i)
{
if (pool->threadIDs[i] == tid)
{
pool->threadIDs[i] = 0;
printf("threadExit() called, %ld exiting...\n", tid);
break;
}
}
pthread_exit(NULL);
}
线程池:
任务队列;
工作流程;
管理者线程。