java实现二叉树

一、为什么需要树这种数据结构

1) 数组存储方式的分析

优点: 通过下标方式访问元素,速度快。对于有序数组,还可使用二分查找提高检索速度。
缺点: 如果要检索具体某个值,或者插入值(按一定顺序)会整体移动,效率较低 [示意图]

画出操作示意图:

在这里插入图片描述

2) 链式存储方式的分析

优点: 在一定程度上对数组存储方式有优化(比如:插入一个数值节点,只需要将插入节点,链接到链表中即可,删除效率也很好)。
缺点: 在进行检索时,效率仍然较低,比如(检索某个值,需要从头节点开始遍历) 【示意图】
操作示意图:
在这里插入图片描述
3) 树存储方式的分析
能提高数据存储,读取的效率, 比如利用 二叉排序树(Binary Sort Tree),既可以保证数据的检索速度,同时也可以保证数据的插入,删除,修改的速度。【示意图,后面详讲】
案例: [7, 3, 10, 1, 5, 9, 12]
在这里插入图片描述

二、树示意图

在这里插入图片描述
树的常用术语(结合示意图理解):

  1. 节点
  2. 根节点
  3. 父节点
  4. 子节点
  5. 叶子节点 (没有子节点的节点)
  6. 节点的权(节点值)
  7. 路径(从root节点找到该节点的路线) 8) 层
  8. 子树
  9. 树的高度(最大层数)
  10. 森林 :多颗子树构成森林

三、二叉树的概念

  1. 树有很多种,每个节点最多只能有两个子节点的一种形式称为二叉树。
  2. 二叉树的子节点分为左节点和右节点
  3. 示意图
    在这里插入图片描述
  4. 如果该二叉树的所有叶子节点都在最后一层,并且结点总数= 2^n -1 , n 为层数,则我们称为满二叉树。
    在这里插入图片描述
  5. 如果该二叉树的所有叶子节点都在最后一层或者倒数第二层,而且最后一层的叶子节点在左边连续,倒数第二 层的叶子节点在右边连续,我们称为完全二叉树
    在这里插入图片描述

四、二叉树遍历的说明

使用前序,中序和后序对下面的二叉树进行遍历.

  1. 前序遍历: 先输出父节点,再遍历左子树和右子树
  2. 中序遍历: 先遍历左子树,再输出父节点,再遍历右子树
  3. 后序遍历: 先遍历左子树,再遍历右子树,最后输出父节点
  4. 小结: 看输出父节点的顺序,就确定是前序,中序还是后序

五、二叉树遍历应用实例(前序,中序,后序)

应用实例的说明和思路

在这里插入图片描述

六、二叉树-查找指定节点

要求:

  1. 请编写前序查找,中序查找和后序查找的方法。
  2. 并分别使用三种查找方式,查找 heroNO = 5 的节点
  3. 并分析各种查找方式,分别比较了多少次
  4. 思路分析图解
    在这里插入图片描述

七、二叉树-删除节点

要求:

  1. 如果删除的节点是叶子节点,则删除该节点
  2. 如果删除的节点是非叶子节点,则删除该子树.
  3. 测试,删除掉5号叶子节点和3号子树.
  4. 完成删除思路分析
    在这里插入图片描述

六、代码实现

package tree;

/**
 * @program: text
 * @description: 二叉树
 * @author: min
 * @create: 2019-08-16 10:34
 **/
public class BinaryTreeDemo {
    public static void main(String[] args) {
        //先需要创建一颗二叉树
        BinaryTree binaryTree = new BinaryTree();
        //创建需要的结点
        HeroNode root = new HeroNode(1, "宋江");
        HeroNode node2 = new HeroNode(2, "吴用");
        HeroNode node3 = new HeroNode(3, "卢俊义");
        HeroNode node4 = new HeroNode(4, "林冲");
        HeroNode node5 = new HeroNode(5, "关胜");
        //说明,我们先手动创建该二叉树,后面我们学习递归的方式创建二叉树
        root.setLeft(node2);
        root.setRight(node3);
        node3.setRight(node4);
        node3.setLeft(node5);
        binaryTree.setRoot(root);
        //测试
        System.out.println("前序遍历"); // 1,2,3,5,4
        binaryTree.preOrder();
        //测试
        System.out.println("中序遍历");
        binaryTree.infixOrder(); // 2,1,5,3,4

        System.out.println("后序遍历");
        binaryTree.postOrder(); // 2,5,4,3,1

        System.out.println("前序查找");
        binaryTree.preOrderSearch(5);

        System.out.println("中序查找");
        binaryTree.infixOrderSearch(5);

        System.out.println("后序查找");
        binaryTree.postOrderSearch(5);

        //测试一把删除结点
        System.out.println("删除前,前序遍历");
        binaryTree.preOrder(); // 1,2,3,5,4
        binaryTree.delNode(5);
        //binaryTree.delNode(3);
        System.out.println("删除后,前序遍历");
        binaryTree.preOrder(); // 1,2,3,4

    }
}

//定义 BinaryTree 二叉树
class BinaryTree {
    private HeroNode root;

    public void setRoot(HeroNode root) {
        this.root = root;
    }

    //前序遍历
    public void preOrder() {
        if (this.root != null) {
            this.root.preOrder();
        } else {
            System.out.println("二叉树为空,无法遍历");
        }
    }

    //中序遍历
    public void infixOrder() {
        if (this.root != null) {
            this.root.infixOrder();
        } else {
            System.out.println("二叉树为空,无法遍历");
        }
    }

    //后序遍历
    public void postOrder() {
        if (this.root != null) {
            this.root.postOrder();
        } else {
            System.out.println("二叉树为空,无法遍历");
        }
    }

    public HeroNode preOrderSearch(int no) {
        return this.root.preOrderSearch(no);
    }

    public HeroNode infixOrderSearch(int no) {
        return this.root.infixOrderSearch(no);
    }

    public HeroNode postOrderSearch(int no) {
        return this.root.postOrderSearch(no);
    }

    //删除结点
    public void delNode(int no) {
        if (root != null) {
            //如果只有一个 root 结点, 这里立即判断 root 是不是就是要删除结点
            if (root.getNo() == no) {
                root = null;
            } else {
                //递归删除
                root.delNode(no);
            }
        } else {
            System.out.println("空树,不能删除~");
        }
    }

}

//先创建 HeroNode 结点
class HeroNode {
    private int no;
    private String name;
    private HeroNode left; //默认 null
    private HeroNode right; //默认 null

    public HeroNode(int no, String name) {
        this.no = no;
        this.name = name;
    }

    public int getNo() {
        return no;
    }

    public void setNo(int no) {
        this.no = no;
    }

    public String getName() {
        return name;
    }

    public void setName(String name) {
        this.name = name;
    }

    public HeroNode getLeft() {
        return left;
    }

    public void setLeft(HeroNode left) {
        this.left = left;
    }

    public HeroNode getRight() {
        return right;
    }

    public void setRight(HeroNode right) {
        this.right = right;
    }

    @Override
    public String toString() {
        return "HeroNode [no=" + no + ", name=" + name + "]";
    }

    //编写前序遍历的方法
    public void preOrder() {
        System.out.println(this); //先输出父结点 //递归向左子树前序遍历
        if (this.left != null) {
            this.left.preOrder();
        }
        //递归向右子树前序遍历
        if (this.right != null) {
            this.right.preOrder();
        }
    }

    //中序遍历
    public void infixOrder() {
        //递归向左子树中序遍历
        if (this.left != null) {
            this.left.infixOrder();
        }
        //输出父结点
        System.out.println(this);
        //递归向右子树中序遍历
        if (this.right != null) {
            this.right.infixOrder();
        }
    }

    //后序遍历
    public void postOrder() {
        if (this.left != null) {
            this.left.postOrder();
        }
        if (this.right != null) {
            this.right.postOrder();
        }
        System.out.println(this);
    }

    /**
     * @param no 查找 no
     * @return 如果找到就返回该 Node ,如果没有找到返回 null
     */
    public HeroNode preOrderSearch(int no) {
        System.out.println("进入前序查找"); //比较当前结点是不是
        if (this.no == no) {
            return this;
        }
        //1.则判断当前结点的左子节点是否为空,如果不为空,则递归前序查找
        //2.如果左递归前序查找,找到结点,则返回
        HeroNode resNode = null;
        if (this.left != null) {
            resNode = this.left.preOrderSearch(no);
        }
        if (resNode != null) {//说明我们左子树找到
            return resNode;
        }
        //1.左递归前序查找,找到结点,则返回,否继续判断,
        //2.当前的结点的右子节点是否为空,如果不空,则继续向右递归前序查找
        if (this.right != null) {
            resNode = this.right.preOrderSearch(no);
        }
        return resNode;
    }

    //中序遍历查找
    public HeroNode infixOrderSearch(int no) {
        //判断当前结点的左子节点是否为空,如果不为空,则递归中序查找
        HeroNode resNode = null;
        if (this.left != null) {
            resNode = this.left.infixOrderSearch(no);
        }
        if (resNode != null) {
            return resNode;
        }
        System.out.println("进入中序查找");
        //如果找到,则返回,如果没有找到,就和当前结点比较,如果是则返回当前结点
        if (this.no == no) {
            return this;
        }
        //否则继续进行右递归的中序查找
        if (this.right != null) {
            resNode = this.right.infixOrderSearch(no);
        }
        return resNode;
    }

    //后序遍历查找
    public HeroNode postOrderSearch(int no) {
        //判断当前结点的左子节点是否为空,如果不为空,则递归后序查找
        HeroNode resNode = null;
        if (this.left != null) {
            resNode = this.left.postOrderSearch(no);
        }
        if (resNode != null) {//说明在左子树找到
            return resNode;
        }
        //如果左子树没有找到,则向右子树递归进行后序遍历查找
        if (this.right != null) {
            resNode = this.right.postOrderSearch(no);
        }
        if (resNode != null) {
            return resNode;
        }
        System.out.println("进入后序查找");
        //如果左右子树都没有找到,就比较当前结点是不是
        if (this.no == no) {
            return this;
        }
        return resNode;
    }

    //递归删除结点 //1.如果删除的节点是叶子节点,则删除该节点 //2.如果删除的节点是非叶子节点,则删除该子树
    public void delNode(int no) {
        //思路
        /** 1. 因为我们的二叉树是单向的,所以我们是判断当前结点的子结点是否需要删除结点,而不能去判断 当前这个结点是不是需要删除结点.
         2. 如果当前结点的左子结点不为空,并且左子结点 就是要删除结点,就将 this.left = null; 并且就返回 (结束递归删除)
         3. 如果当前结点的右子结点不为空,并且右子结点 就是要删除结点,就将 this.right= null ;并且就返回 (结束递归删除)
         4. 如果第 2 和第 3 步没有删除结点,那么我们就需要向左子树进行递归删除
         5. 如果第 4 步也没有删除结点,则应当向右子树进行递归删除.*/
        //2. 如果当前结点的左子结点不为空,并且左子结点 就是要删除结点,就将 this.left = null; 并且就返回(结束递归删除)
        if (this.left != null && this.left.no == no) {
            this.left = null;
            return;
        }
        //3.如果当前结点的右子结点不为空,并且右子结点 就是要删除结点,就将 this.right= null ;并且就返回(结 束递归删除)
        if (this.right != null && this.right.no == no) {
            this.right = null;
            return;
        }
        //4.我们就需要向左子树进行递归删除
        if (this.left != null) {
            this.left.delNode(no);
        }
        //5.则应当向右子树进行递归删除
        if (this.right != null) {
            this.right.delNode(no);
        }
    }
}

转载至:尚硅谷_韩顺平_图解Java数据结构和算法.pdf

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值