Description
The SUM problem can be formulated as follows: given four lists A, B, C, D of integer values, compute how many quadruplet (a, b, c, d ) ∈ A x B x C x D are such that a + b + c + d = 0 . In the following, we assume that all lists have the same size n .
Input
The first line of the input file contains the size of the lists n (this value can be as large as 4000). We then have n lines containing four integer values (with absolute value as large as 228 ) that belong respectively to A, B, C and D .
Output
For each input file, your program has to write the number quadruplets whose sum is zero.
Sample Input
6 -45 22 42 -16 -41 -27 56 30 -36 53 -37 77 -36 30 -75 -46 26 -38 -10 62 -32 -54 -6 45
Sample Output
5
Hint
Sample Explanation: Indeed, the sum of the five following quadruplets is zero: (-45, -27, 42, 30), (26, 30, -10, -46), (-32, 22, 56, -46),(-32, 30, -75, 77), (-32, -54, 56, 30).
代码:
#include<cstdio>
#include<algorithm>
using namespace std;
typedef long long ll;
ll a[5000],b[5000],c[5000],d[5000],ab[16000010];
int main(){
int n;
scanf("%d",&n);
for(int i = 0;i < n;i++){
scanf("%lld%lld%lld%lld",&a[i],&b[i],&c[i],&d[i]);
}
int k = 0;
for(int i = 0;i < n;i++){
for(int j = 0;j < n;j++){
ab[k++] = a[i]+b[j];
}
}
sort(ab,ab+k);
ll ans = 0;
for(int i = 0;i < n;i++){
for(int j = 0;j < n;j++){
ll te = -(c[i]+d[j]);
ans+= upper_bound(ab,ab+k,te)-lower_bound(ab,ab+k,te);
}
}
printf("%lld\n",ans);
return 0;
}
本文探讨了一个经典的计算机科学问题——四数求和。给定四个整数列表A、B、C和D,目标是找出所有可能的四元组(a, b, c, d),使得a + b + c + d = 0。文章详细介绍了如何通过两层循环构建辅助数组ab,并使用二分查找算法来计算满足条件的四元组数量。
440

被折叠的 条评论
为什么被折叠?



