Kernel K-means:让K-means在非线性空间“大显身手”

大家好!欢迎来到我的优快云技术分享博客😃。在之前的几篇博客中,我们深入探讨了多种K-means的优化算法,从基础的K-means算法,到Canopy + K-means算法、K-means++算法、二分K-means,再到ISODATA算法,每一种算法都有其独特的优势和适用场景。今天,我们要介绍一种更为强大的K-means优化算法——Kernel K-means,它能让K-means在非线性数据空间中也能发挥出色的性能👏。

📚 回顾与关联

在开始介绍Kernel K-means之前,我们先简单回顾一下之前提到的几种算法:

  • K-means算法:简单易用,通过迭代将数据点分配到最近的聚类中心,但容易陷入局部最优,且对初始中心点敏感。👇点击回顾K-means算法原理
  • Canopy + K-means算法:先用Canopy算法进行粗聚类,确定初始中心点,再用K-means进行精确聚类,提高了聚类效率和准确性。👇点击回顾Canopy + K-means算法原理
  • K-means++算法:改进了初始中心点的选择方式,使得初始中心点分布更均匀,提高了聚类效果。👇点击回顾K-means++算法原理
  • 二分K-means:通过不断二分聚类来优化聚类结果,避免了随机初始化带来的不稳定问题。👇点击回顾二分K-means算法原理
  • ISODATA算法:在K-means的基础上增加了合并和分裂操作,能够自动调整聚类数量。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI妈妈手把手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值