5-1
标题: 振兴中华
小明参加了学校的趣味运动会,其中的一个项目是:跳格子。
地上画着一些格子,每个格子里写一个字,如下所示:(也可参见p1.jpg)
从我做起振
我做起振兴
做起振兴中
起振兴中华
比赛时,先站在左上角的写着“从”字的格子里,可以横向或纵向跳到相邻的格子里,但不能跳到对角的格子或其它位置。一直要跳到“华”字结束。
要求跳过的路线刚好构成“从我做起振兴中华”这句话。
请你帮助小明算一算他一共有多少种可能的跳跃路线呢?
答案是一个整数,请通过浏览器直接提交该数字。
注意:不要提交解答过程,或其它辅助说明类的内容。
一共有(8分) 种可能的跳跃路线
思路:搜索。
代码:
#include<iostream>
using namespace std;
int mapp[4][5] = {1,2,3,4,5,
2,3,4,5,6,
3,4,5,6,7,
4,5,6,7,8 };
int res = 0;
void dfs(int x,int y,int step)
{
if(step>8)
return ;
if(step==8&&mapp[x][y]==8)
{
res++;
return;
}
if(x+1<4&&mapp[x+1][y]==step+1)
dfs(x+1,y,step+1);
if(y+1<5&&mapp[x][y+1]==step+1)
dfs(x,y+1,step+1);
}
int main()
{
dfs(0,0,1);
printf("%d",res);
}
答案:35
2.某君新认识一网友。
当问及年龄时,他的网友说:
“我的年龄是个2位数,我比儿子大27岁,
如果把我的年龄的两位数字交换位置,刚好就是我儿子的年龄”
请你计算:网友的年龄一共有多少种可能情况?
提示:30岁就是其中一种可能哦.
请填写表示可能情况的种数。
注意:你提交的应该是一个整数,不要填写任何多余的内容或说明性文字。
思路:暴力循环
代码:略
答案:7
3.
搭积木
小明最近喜欢搭数字积木,
一共有10块积木,每个积木上有一个数字,0~9。
搭积木规则:
每个积木放到其它两个积木的上面,并且一定比下面的两个积木数字小。
最后搭成4层的金字塔形,必须用完所有的积木。
下面是两种合格的搭法:
0
1 2
3 4 5
6 7 8 9
0
3 1
7 5 2
9 8 6 4
请你计算这样的搭法一共有多少种?
请填表示总数目的数字。 注意:你提交的应该是一个整数,不要填写任何多余的内容或说明性文字。
思路:将0-9放到数组里,然后挨个判断,利用c++中的next_permutation,将0-9全排列。
注意:next_permutation最大能算的为12,13;其中算12的全排列就需要两分钟。用的时候可能会超时。
并且这个函数会忽略一开始的全排列。比如123456的全排列应该有6!个,但是利用此函数算出的全排列有6!-1个。
即忽略“123456”
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
int main()
{
int a[10] = {0,1,2,3,4,5,6,7,8,9};
int counts = 1;//0,1,2,3,4,5,6,7,8,9符合条件
while(next_permutation(a+1,a+10))//0只能做a[0]
{
if(a[1]<a[3]&&a[1]<a[4]&&a[2]<a[4]&&a[2]<a[5]&&a[3]<a[6]&&a[3]<a[7]&&a[4]<a[7]&&a[4]<a[8]&&a[5]<a[8]&&a[5]<a[9])
counts++;
}
printf("%d",counts);
}
答案:768
寒假作业
现在小学的数学题目也不是那么好玩的。
看看这个寒假作业:
□ + □ = □
□ - □ = □
□ × □ = □
□ ÷ □ = □
(如果显示不出来,可以参见【图1.jpg】)
每个方块代表1~13中的某一个数字,但不能重复。
比如:
6 + 7 = 13
9 - 8 = 1
3 * 4 = 12
10 / 2 = 5
以及:
7 + 6 = 13
9 - 8 = 1
3 * 4 = 12
10 / 2 = 5
就算两种解法。(加法,乘法交换律后算不同的方案)
你一共找到了多少种方案?
请填写表示方案数目的整数。
注意:你提交的应该是一个整数,不要填写任何多余的内容或说明性文字。
思路:搜索
#include <stdio.h>
int num[4][3];
int vis[14],sum;
void dfs(int step)
{
int x=step/3;
int y=step%3;
if(step==12)
{
if(num[3][1]!=0&&num[3][0]%num[3][1]==0&&num[3][0]/num[3][1]==num[3][2])
sum++;
return ;
}
else if(step==3)
{
if(num[0][0]+num[0][1]!=num[0][2])
return ;
}
else if(step==6)
{
if(num[1][0]-num[1][1]!=num[1][2])
return ;
}
else if(step==9)
{
if(num[2][0]*num[2][1]!=num[2][2])
return ;
}
for(int i=1;i<=13;i++)
{
if(!vis[i])
{
num[x][y]=i;
vis[i]=1;
dfs(step+1);
vis[i]=0;
}
}
}
int main()
{
dfs(0);
printf("%d\n",sum);
}
答案:64
题目标题: 排它平方数
小明正看着 203879 这个数字发呆。
原来,203879 * 203879 = 41566646641
这有什么神奇呢?仔细观察,203879 是个6位数,并且它的每个数位上的数字都是不同的,并且它平方后的所有数位上都不出现组成它自身的数字。
具有这样特点的6位数还有一个,请你找出它!
再归纳一下筛选要求:
1. 6位正整数
2. 每个数位上的数字不同
3. 其平方数的每个数位不含原数字的任何组成数位
答案是一个6位的正整数。
请通过浏览器提交答案。
注意:只提交另一6位数,题中已经给出的这个不要提交。
注意:不要书写其它的内容(比如:说明性的文字)。
思路:暴力循环
答案:639172
标题: 颠倒的价牌
小李的店里专卖其它店中下架的样品电视机,可称为:样品电视专卖店。
其标价都是4位数字(即千元不等)。
小李为了标价清晰、方便,使用了预制的类似数码管的标价签,只要用颜色笔涂数字就可以了(参见p1.jpg)。
这种价牌有个特点,对一些数字,倒过来看也是合理的数字。如:1 2 5 6 8 9 0 都可以。
这样一来,如果牌子挂倒了,有可能完全变成了另一个价格,比如:1958 倒着挂就是:8561,差了几千元啊!!
当然,多数情况不能倒读,比如,1110 就不能倒过来,因为0不能作为开始数字。
有一天,悲剧终于发生了。某个店员不小心把店里的某两个价格牌给挂倒了。并且这两个价格牌的电视机都卖出去了!
庆幸的是价格出入不大,其中一个价牌赔了2百多,另一个价牌却赚了8百多,综合起来,反而多赚了558元。
请根据这些信息计算:赔钱的那个价牌正确的价格应该是多少?
答案是一个4位的整数,请通过浏览器直接提交该数字。
注意:不要提交解答过程,或其它辅助说明类的内容。
思路:循环,注意69的变化即可
答案:9088
标题:逆波兰表达式
正常的表达式称为中缀表达式,运算符在中间,主要是给人阅读的,机器求解并不方便。
例如:3 + 5 * (2 + 6) - 1
而且,常常需要用括号来改变运算次序。
相反,如果使用逆波兰表达式(前缀表达式)表示,上面的算式则表示为:
- + 3 * 5 + 2 6 1
不再需要括号,机器可以用递归的方法很方便地求解。
为了简便,我们假设:
1. 只有 + - * 三种运算符
2. 每个运算数都是一个小于10的非负整数
下面的程序对一个逆波兰表示串进行求值。
其返回值为一个结构:其中第一元素表示求值结果,第二个元素表示它已解析的字符数。
struct EV
{
int result; //计算结果
int n; //消耗掉的字符数
};
struct EV evaluate(char* x)
{
struct EV ev = {0,0};
struct EV v1;
struct EV v2;
if(*x==0) return ev;
if(x[0]>='0' && x[0]<='9'){
ev.result = x[0]-'0';
ev.n = 1;
return ev;
}
v1 = evaluate(x+1);
v2 = _____________________________; //填空位置
if(x[0]=='+') ev.result = v1.result + v2.result;
if(x[0]=='*') ev.result = v1.result * v2.result;
if(x[0]=='-') ev.result = v1.result - v2.result;
ev.n = 1+v1.n+v2.n;
return ev;
}
请分析代码逻辑,并推测划线处的代码,通过网页提交。
注意:仅把缺少的代码作为答案,千万不要填写多余的代码、符号或说明文字!!
答案 :evluate(x+v.n+1);
7-1 买不到的数目(qdulq) (30 分)
买不到的数目
小明开了一家糖果店。他别出心裁:把水果糖包成4颗一包和7颗一包的两种。糖果不能拆包卖。
小朋友来买糖的时候,他就用这两种包装来组合。当然有些糖果数目是无法组合出来的,比如要买 10 颗糖。
你可以用计算机测试一下,在这种包装情况下,最大不能买到的数量是17。大于17的任何数字都可以用4和7组合出来。
本题的要求就是在已知两个包装的数量时,求最大不能组合出的数字。
输入格式
两个正整数,表示每种包装中糖的颗数(都不多于1000)
输出格式
一个正整数,表示最大不能买到的糖数
样例输入1
4 7
样例输出1
17
样例输入2
3 5
样例输出2
7
资源约定:
峰值内存消耗 < 64M
CPU消耗 < 3000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入...” 的多余内容。
所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。
注意: main函数需要返回0
注意: 只使用ANSI C/ANSI C++ 标准,不要调用依赖于编译环境或操作系统的特殊函数。
注意: 所有依赖的函数必须明确地在源文件中 #include , 不能通过工程设置而省略常用头文件。
提交时,注意选择所期望的编译器类型。
思路:找规律
代码:
#include<iostream>
using namespace std;
int main()
{
int a,b;
scanf("%d %d",&a,&b);
printf("%d",a*b-a-b);
}
7-2 大臣的旅费(qdulq) (40 分)
问题描述
很久以前,T王国空前繁荣。为了更好地管理国家,王国修建了大量的快速路,用于连接首都和王国内的各大城市。
为节省经费,T国的大臣们经过思考,制定了一套优秀的修建方案,使得任何一个大城市都能从首都直接或者通过其他大城市间接到达。同时,如果不重复经过大城市,从首都到达每个大城市的方案都是唯一的。
J是T国重要大臣,他巡查于各大城市之间,体察民情。所以,从一个城市马不停蹄地到另一个城市成了J最常做的事情。他有一个钱袋,用于存放往来城市间的路费。
聪明的J发现,如果不在某个城市停下来修整,在连续行进过程中,他所花的路费与他已走过的距离有关,在走第x千米到第x+1千米这一千米中(x是整数),他花费的路费是x+10这么多。也就是说走1千米花费11,走2千米要花费23。
J大臣想知道:他从某一个城市出发,中间不休息,到达另一个城市,所有可能花费的路费中最多是多少呢?
输入格式
输入的第一行包含一个整数n,表示包括首都在内的T王国的城市数
城市从1开始依次编号,1号城市为首都。
接下来n-1行,描述T国的高速路(T国的高速路一定是n-1条)
每行三个整数Pi, Qi, Di,表示城市Pi和城市Qi之间有一条高速路,长度为Di千米。
输出格式
输出一个整数,表示大臣J最多花费的路费是多少。
样例输入1
5
1 2 2
1 3 1
2 4 5
2 5 4
样例输出1
135
输出说明
大臣J从城市4到城市5要花费135的路费。
根据资源限制尽可能考虑支持更大的数据规模。
资源约定:
峰值内存消耗 < 64M
CPU消耗 < 5000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入...” 的多余内容。
所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。
注意: main函数需要返回0 注意: 只使用ANSI C/ANSI C++ 标准,不要调用依赖于编译环境或操作系统的特殊函数。 注意: 所有依赖的函数必须明确地在源文件中 #include , 不能通过工程设置而省略常用头文件。
所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。 注意:不要使用package语句。不要使用jdk1.6及以上版本的特性。 注意:主类的名字必须是:Main,否则按无效代码处理。
提交时,注意选择所期望的编译器类型。
作者: happy
单位: 青岛大学
时间限制: 5000 ms
内存限制: 256 MB
代码长度限制: 16 KB
思路:求树的直径,并用向量数组,用数组会超时。
#include<iostream>
#include<vector>
#include<algorithm>
#include<cstring>
using namespace std;
#define maxn 100005
int vis[maxn];
int va[maxn];
vector<int>node[maxn];
vector<int>edge[maxn];
void dfs(int k)
{
vis[k] = 1;
for(int i = 0; i < node[k].size(); i ++)
{
if(!vis[node[k][i]]&&edge[k][i]>0)
{
va[node[k][i]] = va[k] + edge[k][i];
dfs(node[k][i]);
}
}
}
int main()
{
int n;
scanf("%d",&n);
for(int i = 1; i < n; i ++)
{
int a,b,c;
scanf("%d %d %d",&a,&b,&c);
node[a].push_back(b);
node[b].push_back(a);
edge[a].push_back(c);
edge[b].push_back(c);
}
dfs(1);
int index = 1;
int m = 0;
for(int i = 1; i <= n; i ++)
{
if(va[i]>m)
{
index = i;
m = va[i];
}
}
memset(vis,0,sizeof vis);
memset(va,0,sizeof va);
dfs(index);
index = 1;
m = 0;
for(int i = 1; i <= n; i ++)
{
if(va[i]>m)
{
index = i;
m = va[i];
}
}
int sum = m*10+(1+m)*m/2;
printf("%d",sum);
}
7-3 剪格子(qdulq) (30 分)
标题:剪格子
如图p1.jpg所示,3 x 3 的格子中填写了一些整数。
我们沿着图中的红色线剪开,得到两个部分,每个部分的数字和都是60。
本题的要求就是请你编程判定:对给定的m x n 的格子中的整数,是否可以分割为两个部分,使得这两个区域的数字和相等。
如果存在多种解答,请输出包含左上角格子的那个区域包含的格子的最小数目。
如果无法分割,则输出 0
程序输入输出格式要求:
程序先读入两个整数 m n 用空格分割 (m,n<10)
表示表格的宽度和高度
接下来是n行,每行m个正整数,用空格分开。每个整数不大于10000
程序输出:
在所有解中,包含左上角的分割区可能包含的最小的格子数目。
例如:
用户输入:
3 3
10 1 52
20 30 1
1 2 3
则程序输出:
3
再例如:
用户输入:
4 3
1 1 1 1
1 30 80 2
1 1 1 100
则程序输出:
10
(参见p2.jpg)
资源约定:
峰值内存消耗(含虚拟机) < 64M
CPU消耗 < 5000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入...” 的多余内容。
所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。
注意:不要使用package语句。不要使用jdk1.6及以上版本的特性。
注意:主类的名字必须是:Main,否则按无效代码处理。
注意: main函数需要返回0
注意: 只使用ANSI C/ANSI C++ 标准,不要调用依赖于编译环境或操作系统的特殊函数。
注意: 所有依赖的函数必须明确地在源文件中 #include , 不能通过工程设置而省略常用头文件。
提交时,注意选择所期望的编译器类型。
思路:dfs
代码:
#include <iostream>
using namespace std;
int a[10][10];
int dx[4] = {0,1,0,-1};
int dy[4] = {1,0,-1,0};
bool isv[10][10];
int M,N,SUM;
bool judge(int x,int y,int num)
{
if( x<1 || y<1 || x>N || y>M||isv[x][y])
return 1;
if( num + a[x][y] > SUM/2 ) //走这一步超过了和的1半
return 1;
return 0;
}
int dfs(int x,int y,int num)
{
if(num==SUM/2)
{
return 1;
}
for(int i=0;i<4;i++)
{
int nx = x + dx[i];
int ny = y + dy[i];
if( judge(nx,ny,num) ) //判断
continue;
//下一步可以走
isv[nx][ny] = true;
int res = dfs(nx,ny,num+a[nx][ny]);
if(res) //产生结果,直接返回
return res+1;
isv[nx][ny] = false;
}
return 0;
}
int main()
{
scanf("%d %d",&N,&M);
for(int i=1;i<=N;i++)
for(int j=1;j<=M;j++)
{
cin>>a[i][j];
SUM += a[i][j];
}
if( SUM%2 )
{ //和是奇数一定不可以
cout<<0<<endl;
}
else
{ //和是偶数继续判断
isv[1][1] = true;
cout<<dfs(1,1,a[1][1])<<endl;
}
}