GradientBoosting_classification_model

本文通过使用Python的scikit-learn库进行特征选择,并基于Iris数据集演示了多种特征选择方法,包括基于树的方法、Logistic回归及SVM等。此外,还介绍了如何利用GridSearchCV进行梯度提升分类器的参数优化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn import preprocessing
from sklearn.model_selection import train_test_split,GridSearchCV

from sklearn.feature_selection import SelectFromModel
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.svm import LinearSVC

from sklearn.ensemble import GradientBoostingClassifier
from sklearn.metrics import classification_report,confusion_matrix

dataset = datasets.load_iris()
features,labels= dataset.feature_names,list(dataset.target_names)
X,y = dataset.data,dataset.target

scaler = preprocessing.StandardScaler()
x = scaler.fit_transform(X)

#特征选择
clf = ExtraTreesClassifier(n_estimators=10,criterion='gini',random_state=1)
clf.fit(x,y)
print('基于树的特征打分结果如下:',clf.feature_importances_)
model = SelectFromModel(clf,prefit=True)
result = model.transform(x)
index = []
for col in range(x.shape[1]):
   if x[0,col] in list(result[0]):
       index.append(col)
print('基于树的特征选择结果:',index)


clf = LogisticRegression(penalty='l1',dual=False,C=0.1,random_state=1)
clf.fit(x,y)
print('基于Logistic特征打分结果如下:',clf.coef_[0])
model = SelectFromModel(clf,prefit=True)
result = model.transform(x)
index = []
for col in range(x.shape[1]):
    if x[0,col] in list(result[0]):
        index.append(col)
print('基于Logistic的特征选择结果:',index)

clf = LinearSVC(penalty='l1',dual=False,C=0.1,random_state=1)
clf.fit(x,y)
print('基于SVM特征打分结果如下:',clf.coef_[0])
model = SelectFromModel(clf,prefit=True)
result = model.transform(x)
index = []
for col in range(x.shape[1]):
    if x[0,col] in list(result[0]):
        index.append(col)
print('基于LinearSVC的特征选择结果:',index)

x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3,random_state=1)

#优化参数
params = {
        'learning_rate':[0.0001,0.001,0.01,0.1],
        'n_estimators':range(100,200)
    }

model = GridSearchCV(GradientBoostingClassifier(loss='deviance'),params)
model.fit(x_train,y_train)
print('最佳模型为:\n',model.best_estimator_)
print('最佳参数为:\n',model.best_params_)
...
LR=0.0001,n_estimators=189
...

clf = GradientBoostingClassifier(loss='deviance',learning_rate=0.0001,n_estimators=189)
clf.fit(x_train,y_train)
print('----------------训练集----------------')
train_predict = clf.predict(x_train)
print(classification_report(y_train,train_predict,target_names=labels))
print(pd.DataFrame(confusion_matrix(y_train,train_predict)))

print('----------------测试集----------------')
test_predict = clf.predict(x_test)
print(classification_report(y_test,test_predict,target_names=labels))
print(pd.DataFrame(confusion_matrix(y_test,test_predict)))

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值