GradientBoosting_regression_model

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn import preprocessing
from sklearn.model_selection import train_test_split,GridSearchCV

from sklearn.linear_model import Lasso,Ridge
from sklearn.ensemble import RandomForestRegressor

from sklearn.ensemble import GradientBoostingRegressor
from sklearn.metrics import mean_squared_error

#忽视警告
import warnings
warnings.filterwarnings("ignore")


dataset = datasets.load_boston()
featurenames = list(dataset.feature_names)
X,y = dataset.data,dataset.target

scaler = preprocessing.StandardScaler()
x = scaler.fit_transform(X)

#特征提取
clf = Lasso(alpha=1.0)
clf.fit(x,y)
coefs = clf.coef_
scores = {}
for name,coef in zip(featurenames,coefs):
    sco

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值