1. 香农熵(Shannon entropy)
信息熵(又叫香农熵)反映了一个系统的无序化(有序化)程度,一个系统越有序,信息熵就越低,反之就越高。
如果一个随机变量 X 的可能取值为 X={x1,x2,…,xn},对应的概率为 p(X=xi),则随机变量 X 的信息熵为:
H(X)=?∑i=1np(xi)logp(xi)
2. 相对熵(relative entropy)
所谓相对,自然在两个随机变量之间。又称互熵,Kullback–Leibler divergence(K-L 散度)等。设 p(x) 和 q(x) 是 X 取值的两个概率分布,则 p 对 q的相对熵为:
D(p||q)=∑i=1np(x)logp(x)q(x)
在一定程度上,熵可以度量两个随机变量的距离。KL 散度是两个概率分布 P 和 Q 差别的非对称性的度量。KL 散度是用来度量使用基于 Q 的编码来编码来自 P 的样本平均所需的额外的位元数。
典型情况下,P 表示数据的真实分布,Q 表示数据的理论分布,模型分布,或 P 的近似分布。
相对熵的性质,相对熵(KL散度)有两个主要的性质。如下
- (1)尽管 KL 散度从直观上是个度量或距离函数,但它并不是一个真正的度量或者距离,因为它不具有对称性,即
D(p||q)≠D(q||p)
-
(2)相对熵的值为非负值,即
D(p||q)≥0 </