原本代码源自:https://blog.youkuaiyun.com/han_xiaoyang/article/details/49797143
那些因为版本问题出现的错误
1原本代码:
import matplotlib.pyplot as plt
fig = plt.figure()
fig.set(alpha=0.2) # 设定图表颜色alpha参数
….
error:
RuntimeWarning: Glyph 20917 missing from current font.
font.set_text(s, 0, flags=flags)
Solution:添加字体类型
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=['SimHei'] #显示中文标签
plt.rcParams['axes.unicode_minus']=False
fig = plt.figure()
fig.set(alpha=0.2) # 设定图表颜色alpha参数
….
2原本代码:
def set_missing_ages(df):
# 把已有的数值型特征取出来丢进Random Forest Regressor中
age_df = df[['Age', 'Fare', 'Parch', 'SibSp', 'Pclass']]
# 乘客分成已知年龄和未知年龄两部分
known_age = age_df[age_df.Age.notnull()].as_matrix()
unknown_age = age_df[age_df.Age.isnull()].as_matrix()
# y即目标年龄
….
error:
AttributeError: 'DataFrame' object has no attribute 'as_matrix'
Solution: #原本的pandas使用df.as_matrix() 改成现在的pandas应该使用df.values()
def set_missing_ages(df):
# 把已有的数值型特征取出来丢进Random Forest Regressor中
age_df = df[['Age', 'Fare', 'Parch', 'SibSp', 'Pclass']]
# 乘客分成已知年龄和未知年龄两部分#
known_age = age_df[age_df.Age.notnull()].values
unknown_age = age_df[age_df.Age.isnull()].values#现在的pandas是使用df.values()
# y即目标年龄
y = known_age[:, 0]
….
注:文中的所有df.as_matrix()均改成df.values()
3原本代码:
import sklearn.preprocessing as preprocessing
scaler = preprocessing.StandardScaler()
age_scale_param = scaler.fit(df['Age'])
df['Age_scaled'] = scaler.fit_transform(df['Age'], age_scale_param)
fare_scale_param = scaler.fit(df['Fare'])
df['Fare_scaled'] = scaler.fit_transform(df['Fare'], fare_scale_param)
df
….
error:
Reshape your data either using array.reshape(-1, 1) if your data has a single feature or array.reshape(1, -1) if it contains a single sample.
Solution: 数据归一出现的reshape问题
import sklearn.preprocessing as preprocessing
scaler = preprocessing.StandardScaler()
age_scale_param = scaler.fit(df['Age'].values.reshape(-1, 1))
df['Age_scaled'] = scaler.fit_transform(df['Age'].values.reshape(-1, 1), age_scale_param)
fare_scale_param = scaler.fit(df['Fare'].values.reshape(-1, 1))
df['Fare_scaled'] = scaler.fit_transform(df['Fare'].values.reshape(-1, 1), fare_scale_param)
….
4原本代码:
# fit到RandomForestRegressor之中
clf = linear_model.LogisticRegression(C=1.0, penalty='l1', tol=1e-6)
clf.fit(X, y)
clf
….
error:
ValueError: Solver lbfgs supports only 'l2' or 'none' penalties, got l1 penalty.
Solution: 解决办法源自:https://blog.youkuaiyun.com/qq_22592457/article/details/103504796
# fit到RandomForestRegressor之中
clf = linear_model.LogisticRegression(C=1.0, penalty='l1', tol=1e-6,solver='liblinear')
clf.fit(X, y)
clf
….
第一次写类似这样的博文,不知道会不会冒犯原著,但是希望能帮到大家,一起努力学习机器学习,学习kaggle~