拓扑排序的算法图解
拓扑排序算法的基本步骤:
1. 构造一个队列Q(queue) 和 拓扑排序的结果队列T(topological);
2. 把所有没有依赖顶点的节点放入Q;
3. 当Q还有顶点的时候,执行下面步骤:
3.1 从Q中取出一个顶点n(将n从Q中删掉),并放入T(将n加入到结果集中);
3.2 对n每一个邻接点m(n是起点,m是终点);
3.2.1 去掉边<n,m>;
3.2.2 如果m没有依赖顶点,则把m放入Q;
注:顶点A没有依赖顶点,是指不存在以A为终点的边。
以上图为例,来对拓扑排序进行演示。
第1步:将B和C加入到排序结果中。
顶点B和顶点C都是没有依赖顶点,因此将C和C加入到结果集T中。假设ABCDEFG按顺序存储,因此先访问B,再访问C。访问B之后,去掉边<B,A>和<B,D>,并将A和D加入到队列Q中。同样的,去掉边<C,F>和<C,G>,并将F和G加入到Q中。
(01) 将B加入到排序结果中,然后去掉边<B,A>和<B,D>;此时,由于A和D没有依赖顶点,因此并将A和D加入到队列Q中。
(02) 将C加入到排序结果中,然后去掉边<C,F>和<C,G>;此时,由于F有依赖顶点D,G有依赖顶点A,因此不对F和G进行处理。
第2步:将A,D依次加入到排序结果中。
第1步访问之后,A,D都是没有依赖顶点的,根据存储顺序,先访问A,然后访问D。访问之后,删除顶点A和顶点D的出边。
第3步:将E,F,G依次加入到排序结果中。
因此访问顺序是:B -> C -> A -> D -> E -> F -> G
//邻接矩阵
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
int indegree[100];
int n,m;
bool map[100][100];
int a[100];
int topu()
{
queue<int> q;
int cnt = 1;
while(!q.empty())//清空队列
q.pop();
for(int i = 1; i <= n ; i++)
if(indegree[i] == 0)
q.push(i);//将 没有依赖顶点的节点入队
int u;
while(!q.empty()) //
{
u = q.front();
a[cnt++] = u;//将上边选出的没有依赖顶点的节点加入到排序结果中
q.pop();//删除队顶元素
for(int i = 1; i <= n ; i++)
{
if(map[u][i])
{
indegree[i] --;//删去以u为顶点的边
if(indegree[i] == 0) //如果节点i的所有依赖顶点连接边都已经删去
q.push(i); //即变为无依赖顶点的节点 将其入队
}
}
if(cnt == n)//如果排序完成输出结果
{
for(int i = 1 ; i <= n ; i++)
printf(" %d",a[i]);
}
}
}
int main()
{
int u,v;
while(~scanf("%d%d",&n,&m))
{
memset(indegree,0,sizeof(indegree));
memset(map,0,sizeof(map));
for(int i = 0 ; i < m ; i++)
{
scanf("%d%d",&u,&v);
if(!map[u][v])//考虑重边
{
indegree[v]++;//连接v的边的条数
map[u][v] = 1;//标记u v已经连接
}
}
topu();
}
return 0;
}