
大家周末快乐!随着最近项目落地,0.10.0 即将发布,准备写一系列教程,今天第一篇,介绍 IoTDB 的数据模型和建模方式。
正文 2855 字,预计阅读时间 8 分钟。
1、什么是时序数据?
物联网诞生于1999年,在其理念和技术的不断革新下,无处不在的设备和设施正在被越来越多的通过网络连接起来,并不断向云端发送实况数据。
以国家级气象观测站为例,全国有近6万个气象观测站,每个气象观测站有70种气象物理量需要采集。某市地铁每列列车拥有3200个指标需要测量,全市列车数达300列。服务器运维监控中,一台服务器需要同时监测IOPS、CPU、网络等十余项指标。这些例子中展现出两个概念:设备与度量指标。所谓度量指标(又被称为工况、测点)是指用户关心的能反映目标的某种状况的数据项,例如CPU利用率、温度、湿度等等。设备是指一个拥有一系列度量指标的实体,例如一台服务器、一个进程、一列车、一个气象观测站等等。一个设备的一个度量指标形成了一条时序数据的唯一标识。
随着时间推移,这条时序数据会产生一系列(时间戳,值)的二元组数据点,构成了时间序列数据集。因此,我们定义一条时间序列是由一个时间序列标识(设备和度量指标),一系列时间戳和数据值对组成的无限集。一个时间序列数据库将管理百万甚至千万条这样的时间序列。
2、IoTDB 数据模型及手动创建方式

本文是Apache IoTDB系列教程的第一篇,主要介绍IoTDB的数据模型,包括时序数据的概念、IoTDB的元数据管理结构(存储组、设备、测点),推荐的建模方式,以及自动创建元数据的模式。文章详细讲解了如何手动和自动创建时间序列,并提供了配置和调优建议。
最低0.47元/天 解锁文章
2052

被折叠的 条评论
为什么被折叠?



