NOIP2008普及组复赛T3——传球游戏

博客介绍了NOIP比赛中的一道传球游戏问题,探讨了当n个同学围成一圈,球从小蛮手中开始传,经过m次传递后回到小蛮手中的不同方法数。通过动态规划(DP)来解决,状态表示为传球次数和当前持球者,状态转移方程考虑来自左右同学的传球,初始状态为传0次球回到1号同学的情况。最终输出符合条件的传球方法数,时间复杂度为O(n*m)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

上体育课的时候,小蛮的老师经常带着同学们一起做游戏。

这次,老师带着同学们一起做传球游戏。

游戏规则是这样的:

n个同学站成一个圆圈,其中的一个同学手里拿着一个球,当老师吹哨子时开始传球,每个同学可以把球传给自己左右的两个同学中的一个(左右任意),当老师再次吹哨子时,传球停止,此时,拿着球没传出去的那个同学就是败者,要给大家表演一个节目。

聪明的小蛮提出一个有趣的问题:有多少种不同的传球方法可以使得从小蛮手里开始传的球,传了m次以后,又回到小蛮手里。

两种传球的方法被视作不同的方法,当且仅当这两种方法中,接到球的同学按接球顺序组成的序列是不同的。

比如有3个同学1号、2号、3号,并假设小蛮为1号,球传了3次回到小蛮手里的方式有1->2->3->1和1->3->2->1,共2种。

输入格式
输入文件共一行,有两个用空格隔开的整数n,m。

输出格式
输出文件共一行,有一个整数,表示符合题意的方法数。

数据范围
3≤n≤303≤n≤30

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

少儿编程乔老师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值