给定一个链表,比如L1--->L2---->L3---->................----->Ln,把链表调整为L1---->Ln----->L2----->Ln-1------>L3----

本文介绍了一种链表位置调整算法,通过将链表分为前后两部分并翻转后部分,实现节点间的顺序调整。该算法的时间复杂度为O(1),适用于链表操作优化。

给定一个链表,比如L1--->L2---->L3---->................----->Ln,把链表调整为L1---->Ln----->L2----->Ln-1------>L3------>Ln-3...........

要求:

1、间复杂度O(1);

2、节点

class Node

{

int value;

Node next;

}

思路:把链表分为两部分前后两个部分,把后部翻转,然后把后部依次插入前部。

class Node {
	public int value;
	public Node next;

	public Node(int value, Node next) {
		this.value = value;
		this.next = next;
	}
}

public class ListNodePosition{
	public static void printList(Node head)
	{
		   while (head != null) {  
	            System.out.print(head.value+"  ");  
	            head = head.next;  
	        }  
	        System.out.println(); 
	}
	public static void ChangePosition(Node head) {
		if (head == null || head.next == null)
			return;
		Node tmp = head;
		int num = 0;
		while (tmp != null) {
			tmp = tmp.next;
			num++;
		}
		System.out.println(num);
		int n = 0;
		tmp = head;
		Node pre1=null;
		Node next1=null;
		int count;
		if(num%2!=0)count=num/2+1;
		else count=num/2;
			while (n < count) {			
				if(n==(count-1))pre1=tmp;
				tmp = tmp.next;
				n++;
				System.out.println(tmp.value);
			}
		pre1.next=null;
		printList(head);
		printList(tmp);
		Node pre =null;
		Node next=null;
		while(tmp!=null)
		{
			next=tmp.next;
			tmp.next=pre;
			pre=tmp;
			tmp= next;
		}
		tmp=pre;
		next=null;
		printList(pre);
        System.out.println(n);
        pre1=head;
		for(int i=0;i<num/2;i++)
		{
			next1=pre1.next;
			next=tmp.next;
			pre1.next=tmp;
			tmp.next=next1;
			pre1=next1;
			tmp=next;
			
		}
		printList(head);	
	}
	
	public static void main(String[] argv) {
		Node node1 = new Node(0, null);
		Node node2 = new Node(1, null);
		Node node3 = new Node(2, null);
		Node node4 = new Node(3, null);
		Node node5 = new Node(4, null);
		Node node6 = new Node(5, null);
		//Node node7 = new Node(6, null);
		node1.next = node2;
		node2.next = node3;
		node3.next = node4;
		node4.next = node5;
		node5.next = node6;
		//node6.next = node7;
		ChangePosition(node1);
	}
}



/*一元多项式的相加和相乘 描述 一元多项式是有序线性表的典型应用,用一个长度为m且每个元素有两个数据项(系数项和指数项)的线性表((p1,e1),(p2,e2),...,(pm,em))可以唯一地表示一个多项式。 本题实现多项式的相加和相乘运算。本题输入保证是按照指数项递增有序的。 对于%15的数据,有1<=n,m<=15 对于%33的数据,有1<=n,m<=50 对于%66的数据,有1<=n,m<=100 对于100%的数据,有1<=n,m<=2050 本题总分150分,得到100分或以上可视为满分 尚未测试极限数据 从右上角下载p77_data.cpp,编译并运行生成随机测试数据 输入 第1一个整数m,表示第一个一元多项式的长度 第2行有2m个整数,p1 e1 p2 e2 ...,中间以空格分割,表示第1个多项式系数和指数 第3一个整数n,表示第二个一元多项式的项数 第4行有2n个整数,p1 e1 p2 e2 ...,中间以空格分割,表示第2个多项式系数和指数 第5行一个整数,若为0,执行加法运算并输出结果,若为1,执行乘法运算并输出结果;若为2,输出一行加法结果和一行乘法的结果。 输出 运算后的多项式链表,要求按指数从小到大排列 当运算结果为0 0时,不输出。 样例输入 4 7 0 3 1 9 8 5 17 3 8 1 22 7 -9 8 0 样例输出 7 0 11 1 22 7 5 17*/ #include<iostream> #define ADDLINE 100 using namespace std; struct ElemType { int p;//系数 int e;//指数 }; struct OnePloy { ElemType* elem; long int num = 0; long int size = 0; void INIT(long int n) { num = n; size = n; elem = new ElemType[size]; for (int i = 0; i < num; ++i) { cin >> elem[i].p >> elem[i].e; } } void EXPAND() { ElemType* newElem = new ElemType[size + ADDLINE]; for (int i = 0; i < num; i++) { newElem[i] = elem[i]; } delete[] elem; elem = newElem; size += ADDLINE; } }; void ADD(OnePloy L1, OnePloy L2, OnePloy& L3) { L3.size = L1.size + L2.size; L3.elem = new ElemType[L3.size]; int n1 = 0, n2 = 0; while (n1 < L1.num && n2 < L2.num) { if (L1.elem[n1].e == L2.elem[n2].e) { int sum_p = L1.elem[n1].p + L2.elem[n2].p; if (sum_p != 0) { L3.elem[L3.num].e = L1.elem[n1].e; L3.elem[L3.num].p = sum_p; L3.num++; } n1++; n2++; } else if (L1.elem[n1].e < L2.elem[n2].e) { L3.elem[L3.num] = L1.elem[n1]; L3.num++; n1++; } else { L3.elem[L3.num] = L2.elem[n2]; L3.num++; n2++; } } while (n1 < L1.num) { L3.elem[L3.num] = L1.elem[n1]; L3.num++; n1++; } while (n2 < L2.num) { L3.elem[L3.num] = L2.elem[n2]; L3.num++; n2++; } } void MULTIPLY(const OnePloy& L1, const OnePloy& L2, OnePloy& L3) { if (L1.num == 0 || L2.num == 0) { L3.size = 0; L3.num = 0; L3.elem = new ElemType[0]; return; } OnePloy temp; temp.size = L1.num * L2.num; temp.elem = new ElemType[temp.size]; for (int i = 0; i < L1.num; i++) { for (int j = 0; j < L2.num; j++) { temp.elem[temp.num].p = L1.elem[i].p * L2.elem[j].p; temp.elem[temp.num].e = L1.elem[i].e + L2.elem[j].e; temp.num++; } } for (int i = 0; i < temp.num - 1; i++) { for (int j = 0; j < temp.num - i - 1; j++) { if (temp.elem[j].e > temp.elem[j + 1].e) { ElemType swap = temp.elem[j]; temp.elem[j] = temp.elem[j + 1]; temp.elem[j + 1] = swap; } } } L3.size = temp.num; L3.elem = new ElemType[L3.size]; L3.num = 0; if (temp.num > 0) { L3.elem[0] = temp.elem[0]; L3.num = 1; for (int i = 1; i < temp.num; i++) { if (temp.elem[i].e == L3.elem[L3.num - 1].e) { // 合并同类项 L3.elem[L3.num - 1].p += temp.elem[i].p; } else { // 如果系数不为0,添加新项 if (L3.elem[L3.num - 1].p != 0) { L3.elem[L3.num] = temp.elem[i]; L3.num++; } else { // 如果系数为0,替换当前项 L3.elem[L3.num - 1] = temp.elem[i]; } } } if (L3.num > 0 && L3.elem[L3.num - 1].p == 0) { L3.num--; } } delete temp.elem; } int main() { long int m,n,order; OnePloy L1, L2, L3; cin >> m; L1.INIT(m); cin >> n; L2.INIT(n); cin >> order; if (order == 0||order==2) { ADD(L1, L2, L3); if(L3.num != 0){ for (int i = 0; i < L3.num; ++i) cout << L3.elem[i].p << " " << L3.elem[i].e << " "; cout << endl; } } if (order == 1 || order == 2) { MULTIPLY(L1, L2, L3); if (L3.num != 0) { for (int i = 0; i < L3.num; ++i) cout << L3.elem[i].p << " " << L3.elem[i].e << " "; cout << endl; } } }完成第三题的实验报告
最新发布
10-12
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值