Python中StandardScaler from sklearn.preprocessing import StandardScaler sc = StandardScaler() x = sc.fit_transform(x)
一: 数组x标准化公式
为数组,
为数组x的平均值,
为数组x的标准差,则标准化的公式为:
import numpy as np from sklearn.preprocessing import StandardScaler sc = StandardScaler() x = np.arange(1,6) # x = np.array([1 2 3 4 5]) x_mean = np.mean(x) # x_mean即为数组x的平均值 x_std = np.std(x) # 数组x的标准差 print(x) print(x_mean) # 3 print(x_std) # 1.4142135623730951 print((x-x_mean)/x_std) # [[-1.41421356] [-0.70710678] [ 0. ] [ 0.70710678] [ 1.41421356]] x = x.reshape(-1,1) #需要将x转成列向量,否则会报错 print(sc.fit_transform(x)) ## sc.fit_transform(x) [[-1.41421356] [-0.70710678] [ 0. ] [ 0.70710678] [ 1.41421356]]