<pre name="code" class="plain"><pre name="code" class="plain">1、k-近邻算法
测量不同特征值之间的距离方法进行分类
优 点 :精度高、对异常值不敏感、无数据输入假定。
缺点:计算复杂度高、空间复杂度高。
适用数据范围:数值型和标称型。
(常用欧氏距离)
1收集数据2准备数据3分析数据4训练算法5测试算法6使用算法
Python中识别中文
文件开头添加
#coding:utf-8
k近邻法与kd树
为了提高k近邻搜索的效率,可以考虑使用特殊的结构存储训练数据,以减少计算距离的次数。具体方法有很多,这里介绍kd树方法
参考
http://blog.youkuaiyun.com/qll125596718/article/details/8426458
Python版实现
http://blog.youkuaiyun.com/q383700092/article/details/51757762
R语言版调用函数
http://blog.youkuaiyun.com/q383700092/article/details/51759313
MapReduce简化实现版
http://blog.youkuaiyun.com/q383700092/article/details/51780865
spark版
后续添加
<span style="font-size: 13.3333px;">from numpy import * # 科学计算包</span>
import operator # 运算符模块
from os import listdir
def createDataSet():
group = array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
labels = ['A','A','B','B']
return group, labels
#KNN算法核心 inx需要分类的向量,训练样本dataSet标签向量labels 近邻的数目
#调用格式KNN.classify0([0,0], group, labels, 3)
def classify0(inX, dataSet, labels, k):
dataSetSize = dataSet.shape[0] #向量大小n
diffMat = tile(inX, (dataSetSize,1)) - dataSet #分类向量1重复n次减去训练样本
sqDiffMat = diffMat**2 #**代表幂计算 2次方
sqDistances = sqDiffMat.sum(axis=1) #计算每行的和
distances = sqDistances**0.5 #每个数开根号
sortedDistIndicies = distances.argsort() #升序排序后的数据原来位置的下标
classCount={}
for i in range(k):
voteIlabel = labels[sortedDistIndicies[i]] #將排序后的labers輸出(从多到少的标号选出3个)
classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1 #get(k,d)如果k不在classCount为d
#将classCount按照第二字段排序
sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)
#返回最近3个值的里最近的那个值的标签
return sortedClassCount[0][0]
#将文本记录到转换NumPy的解析程序
#datingDataMat,datingLabels=KNN.file2matrix('G:/python/pythonwork/datingTestSet2.txt')
def file2matrix(filename):
fr = open(filename)
numberOfLines = len(fr.readlines()) #get the number of lines in the file
returnMat = zeros((numberOfLines,3)) #prepare matrix to return
classLabelVector = [] #prepare labels return
fr = open(filename)
index = 0
for line in fr.readlines():
line = line.strip() #去除首尾空格
listFromLine = line.split('\t')
returnMat[index,:] = listFromLine[0:3]
classLabelVector.append(int(listFromLine[-1])) #索引值-1表示列表中的最后一列元素
index += 1
return returnMat,classLabelVector
#归一化
#normMat, ranges, minVals=KNN.autoNorm(datingDataMat)
def autoNorm(dataSet):
minVals = dataSet.min(0)
maxVals = dataSet.max(0)
ranges = maxVals - minVals
normDataSet = zeros(shape(dataSet))
m = dataSet.shape[0]
normDataSet = dataSet - tile(minVals, (m,1))
normDataSet = normDataSet/tile(ranges, (m,1)) #element wise divide
return normDataSet, ranges, minVals
#分类器结果 KNN.datingClassTest()
def datingClassTest():
hoRatio = 0.50 #hold out 10%
datingDataMat,datingLabels = file2matrix('G:/python/pythonwork/datingTestSet2.txt') #load data setfrom file
normMat, ranges, minVals = autoNorm(datingDataMat)
m = normMat.shape[0]
numTestVecs = int(m*hoRatio)
errorCount = 0.0
for i in range(numTestVecs):
classifierResult = classify0(normMat[i,:],normMat[numTestVecs:m,:],datingLabels[numTestVecs:m],3)
print "the classifier came back with: %d, the real answer is: %d" % (classifierResult, datingLabels[i])
if (classifierResult != datingLabels[i]): errorCount += 1.0
print "the total error rate is: %f" % (errorCount/float(numTestVecs))
print "error: %f,total: %d" % (errorCount,numTestVecs)
#将图像转换为向量
def img2vector(filename):
returnVect = zeros((1,1024))
fr = open(filename)
for i in range(32):
lineStr = fr.readline()
for j in range(32):
returnVect[0,32*i+j] = int(lineStr[j])
return returnVect
#构建手写识别系统
def handwritingClassTest():
hwLabels = []
trainingFileList = listdir('G:/python/pythonwork/trainingDigits') #load the training set
m = len(trainingFileList)
trainingMat = zeros((m,1024))
for i in range(m):
fileNameStr = trainingFileList[i]
fileStr = fileNameStr.split('.')[0] #take off .txt
classNumStr = int(fileStr.split('_')[0])
hwLabels.append(classNumStr)
trainingMat[i,:] = img2vector('G:/python/pythonwork/trainingDigits/%s' % fileNameStr)
testFileList = listdir('G:/python/pythonwork/testDigits') #iterate through the test set
errorCount = 0.0
mTest = len(testFileList)
for i in range(mTest):
fileNameStr = testFileList[i]
fileStr = fileNameStr.split('.')[0] #take off .txt
classNumStr = int(fileStr.split('_')[0])
vectorUnderTest = img2vector('G:/python/pythonwork/testDigits/%s' % fileNameStr)
classifierResult = classify0(vectorUnderTest, trainingMat, hwLabels, 3)
print "the classifier came back with: %d, the real answer is: %d" % (classifierResult, classNumStr)
if (classifierResult != classNumStr): errorCount += 1.0
print "\nthe total number of errors is: %d" % errorCount
print "\nthe total error rate is: %f" % (errorCount/float(mTest))
k近邻法与kd树
为了提高k近邻搜索的效率,可以考虑使用特殊的结构存储训练数据,以减少计算距离的次数。具体方法有很多,这里介绍kd树方法
参考
http://blog.youkuaiyun.com/qll125596718/article/details/8426458