import cv2
import numpy as np
import matplotlib.pyplot as plt
a = np.random.randint(95,100,(20,2)).astype(np.float32)
b = np.random.randint(90,95,(20,2)).astype(np.float32)
data = np.vstack((a,b))
data = np.array(data,dtype='float32')
aLabel = np.zeros((20,1))
bLabel = np.ones((20,1))
label = np.vstack((aLabel,bLabel))
label = np.array(label,dtype='int32')
svm = cv2.ml.SVM_create()
result = svm.train(data,cv2.ml.ROW_SAMPLE,label)
test = np.vstack([[98,90],[90,99]])
test = np.array(test,dtype='float32')
(p1,p2) = svm.predict(test)
plt.scatter(a[:,0],a[:,1],80,'g','o')
plt.scatter(b[:,0],b[:,1],80,'b','s')
plt.scatter(test[:,0],test[:,1],80,'r','*')
print(test)
print(p2)
plt.show()