http://acm.hdu.edu.cn/showproblem.php?pid=1061
Rightmost Digit
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 74784 Accepted Submission(s): 27577
Problem Description
Given a positive integer N, you should output the most right digit of N^N.
Input
The input contains several test cases. The first line of the input is a single integer T which is the number of test cases. T test cases follow.
Each test case contains a single positive integer N(1<=N<=1,000,000,000).
Output
For each test case, you should output the rightmost digit of N^N.
Sample Input
2 3 4
Sample Output
7 6
Hint
In the first case, 3 * 3 * 3 = 27, so the rightmost digit is 7. In the second case, 4 * 4 * 4 * 4 = 256, so the rightmost digit is 6.
题意:求n^n的最后一位数。
题解:快速幂取余 mod = 10
import java.util.Scanner;
public class Main {
@SuppressWarnings("resource")
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
while (sc.hasNext()) {
int T = sc.nextInt();
for (int i = 0; i < T; i++) {
int n = sc.nextInt();
System.out.println(mod(n, n, 10));
}
}
}
public static int mod(int a, int b, int p) {
int ans=1;
a%=p;
while (b!=0)
{
if ((b&1)!=0) ans=ans*a%p;
b>>=1;
a=a*a%p;
}
return ans;
}
}