设计模式之单例模式:singleton

本文深入探讨了单例模式的设计理念,包括懒汉模式和饿汉模式,并提供了详细的代码实现及解析,强调了内存栅栏的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.设计模式是什么?

设计模式其实就是前人总结,代表了最佳实践,对于软件开发过程中对象的封装模式,也是各种复杂问题,极好解耦性的解决方案。

-------------------------------------------------------------------------------------------

下面我们来说一下单例模式的基本概念和代码:

  1. 单例类保证了全局只有唯一一个实例对象

  2. 单例提供获取这个唯一实例的接口


其实就是保证一个类中出现对象的全局唯一性。

首先对于单例模式而言,有2种

  1. 懒汉模式:

#include<bits/stdc++.h>
#include<mutex>
using namespace std;

class singleton
{
    public:
    static singleton* GetInstance()
    {
        //使用双重检查,保证获取锁的资源不浪费
        if(_instance == NULL)
        {
            std::lock_guard<std::mutex>lck(_mtx);
            if(instance == NULL)
            {
                //一下解释标记为a
                singleton *tmp = new singleton();
                MemoryBarrier();//内存栅栏。后面会进行解释。
                _instance = tmp;
            }
        }  
        return _instance;      
    }
    
    static void DelInstance()
    {
        if(_instance != NULL)
        {
            delete _instance;
            _instance = NULL;
        }
    }
    
    private:
    singleton():data(0){};
    singleton(const singleton&){};
    singleton& operator = (const sigleton&);
    static singleton* _instance;
    static mutex _mtx;
    int data;
}
singleton* singleton::_instance = NULL;
mutex singleton::_mtx;

其实单例模式没有真想象的这么简单,百度上许多说单例模式的文章都说的有些许遗漏


这里主要解释一下内存栅栏的概念

如果我们将a处代码转换为_instance = new singleton();

这在编译器中处理为3个部分,1.分配空间,2调用构造函数,3.赋值、

但是在某些情况话,编译器可能进行优化进行重排,然后顺序变成了1,3,2.将赋值提到了构造函数之前。

然后设想在高并发场景中,_instance已经进行了赋值,但是没有调用构造函数,其他现场进入,直接返回_instance。一个没有调用构造函数的_instance,这就会出现错误

所以我们声明一个临时变量,然后添加一个内存栅栏,其实就是指令顺序的隔断,不可提前。保证赋值构造的完全调用,其实就有点类似Linux中的sigsuspend();

以上就是完善的懒汉模式。

-------------------------------------------------------------------------------------------

饿汉模式:

饿汉模式使用RAII

//1
class singleton
{
    public:
    static singleton* GetInstance()
    {
        static single sInstance;
        return &sInstance;
    }
     private:
    singleton():data(0){};
    singleton(const singleton&){};
    singleton& operator = (const sigleton&);
    static singleton* _instance;
    int data;
}

//2
class singleton
{
    public:
    static sington* GetInstance()
    {
        assert(_instance);
        return _instance;
    }
     private:
    singleton():data(0){};
    singleton(const singleton&){};
    singleton& operator = (const sigleton&);
    static singleton* _instance;
    int data;
}
singleton* singleton::_instance = new singleton();

以上。

本文出自 “剩蛋君” 博客,转载请与作者联系!

资源下载链接为: https://pan.quark.cn/s/1bfadf00ae14 “STC单片机电压测量”是一个以STC系列单片机为基础的电压检测应用案例,它涵盖了硬件电路设计、软件编程以及数据处理等核心知识点。STC单片机凭借其低功耗、高性价比和丰富的I/O接口,在电子工程领域得到了广泛应用。 STC是Specialized Technology Corporation的缩写,该公司的单片机基于8051内核,具备内部振荡器、高速运算能力、ISP(在系统编程)和IAP(在应用编程)功能,非常适合用于各种嵌入式控制系统。 在源代码方面,“浅雪”风格的代码通常简洁易懂,非常适合初学者学习。其中,“main.c”文件是程序的入口,包含了电压测量的核心逻辑;“STARTUP.A51”是启动代码,负责初始化单片机的硬件环境;“电压测量_uvopt.bak”和“电压测量_uvproj.bak”可能是Keil编译器的配置文件备份,用于设置编译选项和项目配置。 对于3S锂电池电压测量,3S锂电池由三节锂离子电池串联而成,标称电压为11.1V。测量时需要考虑电池的串联特性,通过分压电路将高电压转换为单片机可接受的范围,并实时监控,防止过充或过放,以确保电池的安全和寿命。 在电压测量电路设计中,“电压测量.lnp”文件可能包含电路布局信息,而“.hex”文件是编译后的机器码,用于烧录到单片机中。电路中通常会使用ADC(模拟数字转换器)将模拟电压信号转换为数字信号供单片机处理。 在软件编程方面,“StringData.h”文件可能包含程序中使用的字符串常量和数据结构定义。处理电压数据时,可能涉及浮点数运算,需要了解STC单片机对浮点数的支持情况,以及如何高效地存储和显示电压值。 用户界面方面,“电压测量.uvgui.kidd”可能是用户界面的配置文件,用于显示测量结果。在嵌入式系统中,用
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值