Python 分形算法__代码里开出来的艺术之花

本文介绍了Python中实现分形算法的几种经典例子,包括科赫雪花、康托三分集、谢尔宾斯基三角形和分形树。通过递归算法,详细展示了这些分形图形的生成过程,并提供了相应的Python代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Python微信订餐小程序课程视频

https://edu.youkuaiyun.com/course/detail/36074

Python实战量化交易理财系统

https://edu.youkuaiyun.com/course/detail/35475

1. 前言

分形几何是几何数学中的一个分支,也称大自然几何学,由著名数学家本华曼德勃罗( 法语:BenoitB.Mandelbrot)在 1975 年构思和发展出来的一种新的几何学。

分形几何是对大自然中微观与宏观和谐统一之美的发现,分形几何最大的特点:

  • 整体与局部的相似性: 一个完整的图形是由诸多相似的微图形组成,而整体图形又是微图形的放大。

局部是整体的缩影,整体是局部的放大。

  • 具有自我叠加性: 整体图形是由微图形不断重复叠加构成,且具有无限叠加能力。

在这里插入图片描述

什么是分形算法?

所谓分形算法就是使用计算机程序模拟出大自然界的分形几何图案,是分形几何数学计算机科学相融合的艺术。

由于分形图形相似性的特点,分形算法多采用递归实现。

2. 分形算法

2.1 科赫雪花

科赫雪花是由瑞典数学家科赫在 1904 年提出的一种不规则几何图形,也称为雪花曲线。

在这里插入图片描述

分形图形的特点是整体几何图形是由一个微图形结构自我复制、反复叠加形成,且最终形成的整体图案和微图形结构一样。在编写分形算法时,需要先理解微图案的生成过程。

在这里插入图片描述

科赫雪花的微图案生成过程:

  • 先画一条直线。科赫雪花本质就由一条直线演化而成。
  • 三等分画好的直线。
  • 取中间线段,然后用夹角为 60° 的两条等长线段替代。
  • 可在每一条线段上都采用如上方式进行迭代操作,便会构造出多层次的科赫雪花。

科赫微图形算法实现:

使用 Python 自带小海龟模块绘制,科赫雪花递归算法的出口的是画直线。

import turtle
'''
size:直线的长度
level: 科赫雪花的层次
'''
def koch(size, level):
    if n == 1:
        turtle.fd(size)
    else:
        for i in [0, 60, -120, 60]:
            turtle.left(i)      
            # 旋转后,再绘制
            koch(size // 3, level - 1)

参数说明:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值