
书籍简介
通过这本实用的操作手册,学习使用生成式人工智能技术创建新颖的文本、图像、音频甚至音乐。读者将理解最先进的生成模型是如何工作的,如何对其进行微调和适应以满足个人需求,以及如何结合现有的构建块创造新的模型和跨领域的创意应用。
本书从理论概念介绍开始,紧接着是指导性的实践应用,包含丰富的代码示例和易于理解的插图。你将学习如何使用开源库来利用变换器和扩散模型,进行代码探索,并研究若干现有项目,以帮助指导你的工作。
-
构建和定制能够生成文本和图像的模型
-
探索使用预训练模型与微调自定义模型之间的权衡
-
创建和使用能够生成、编辑和修改任意风格图像的模型
-
为多种创意用途定制变换器和扩散模型
-
训练能够体现你个人风格的模型
作者介绍
Omar Sanseviero 是 Hugging Face 的首席 Llama 官员及平台与社区负责人,领导开发者倡导工程、设备端和月球项目团队。Omar 拥有丰富的工程经验,曾在 Google 的 Google Assistant 和 TensorFlow Graphics 团队工作。Omar 在 Hugging Face 的工作处于开源、产品、研究和技术社区的交汇点。
Pedro Cuenca 是 Hugging Face 的机器学习工程师,负责扩散软件、模型和应用程序。他在互联网应用领域有超过 20 年的开发经验(在西班牙,他参与创建了第一个互动教育门户、第一家网上书店和第一家免费互联网服务提供商)。近年来,他专注于 iOS 开发。作为 LateNiteSoft 的联合创始人兼首席技术官,他开发了成功的 iPhone 摄影应用 Camera+,并为诸如摄影增强和超分辨率等任务创建了深度学习模型。他还参与了 dalle-mini 背后的开发和运营工作。他带来了将人工智能研究融入现实世界服务中的实际愿景,以及其中的挑战与优化。
Apolinário Passos 是 Hugging Face 的机器学习艺术工程师,跨不同团队工作,涉及多个机器学习在艺术与创意领域的应用场景。Apolinário 拥有超过 10 年的专业与艺术经验,曾在举办艺术展览、编程和产品管理之间交替工作,曾担任 World Data Lab 的产品负责人。Apolinário 旨在确保机器学习生态系统能支持并使艺术应用场景变得有意义。
Jonathan Whitaker 是一名数据科学家和深度学习研究员,专注于生成建模。此前,他曾参与与本书所涵盖主题相关的多个课程,包括 Hugging Face 的扩散模型课程,以及他与 Jeremy Howard 在 2022 年共同创建的 Fast.AI 课程《从深度学习基础到稳定扩散》。他还曾在行业中应用这些技术,担任顾问工作,目前全职从事 Answer.AI 的人工智能研究与开发。






如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)

三、LLM大模型系列视频教程

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

五、AI产品经理大模型教程

LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓


被折叠的 条评论
为什么被折叠?



