【AI大模型】深入理解Agent:从0实现function call

Function的调用时Agent实现很重要的一步,只有了解了这个原理才可以更好的创建Agent。

我将不使用任何langchain等框架或者coze等平台,从0开始构建一个可以调用function的Agent。

源代码已经上传github:github.com/astordu/age…

一、场景

Agent的目标:可以回答关于天气的问题。 用到的function:调用某地方的天气情况,并且反馈

流程: 1.思考: 用户输入问题,模型先对问题进行分析 2.行动: 如果问到了天气问题,则分析出需要调用的function以及function要传入的参数 3.响应:function返回后,将答案整理好回复给用户。

函数自定:

  1. 我们先定义一个获取天气的函数(属于Tools中的一个,这里用于演示,不做真实调用):

         def get_weather(location):
                 return "天气晴朗"
    
    
  2. 再定义一个大模型的发送信息的方法:

     def send_messages(messages):
             response = client.chat.completions.create(
             model="deepseek-chat",
             messages=messages
             )
             return response.choices[0].message
    
     client = OpenAI(
             api_key="<你的deepseek的key>",
             base_url="https://api.deepseek.com",
     )
    
    

二、设计思路

在这里插入图片描述

从“用户提出问题”到“思考”到“响应”其实是调用了多次LLM模型。

所以我们要求模型按照顺序去调用LLM:

你在运行一个“思考”,“工具调用”,“响应”循环。每次只运行一个阶段

1.“思考”阶段:你要仔细思考用户的问题
2.“工具调用阶段”:选择可以调用的工具,并且输出对应工具需要的参数
3.“响应”阶段:根据工具调用返回的影响,回复用户问题。

已有的工具如下:
get_weather:
e.g. get_weather:天津
返回天津的天气情况

Example:
question:天津的天气怎么样?
thought:我应该调用工具查询天津的天气情况
Action:
{
	"function_name":"get_response_time"
	"function_params":{
		"location":"天津"
	}
}
调用Action的结果:“天气晴朗”
Answer:天津的天气晴朗

上边的逻辑正好可以当作system的提示语:

system="""
	你在运行一个“思考”,“工具调用”,“响应”循环。每次只运行一个阶段
	
	1.“思考”阶段:你要仔细思考用户的问题
	2.“工具调用阶段”:选择可以调用的工具,并且输出对应工具需要的参数
	3.“响应”阶段:根据工具调用返回的影响,回复用户问题。
	
	已有的工具如下:
	get_weather:
	e.g. get_weather:天津
	返回天津的天气情况
	
	Example:
	question:天津的天气怎么样?
	thought:我应该调用工具查询天津的天气情况
	Action:
	{
		"function_name":"get_response_time"
		"function_params":{
			"location":"天津"
		}
	}
	调用Action的结果:“天气晴朗”
	Answer:天津的天气晴朗
"""

第一步,向模型提问一个问题

question="北京天气怎么样"

messages = [{"role": "system", "content": system_prompt},
{"role": "user", "content": question}]

message = send_messages(messages)
print(f"Model-1th>\n {message.content}")

返回值:

Model-1th>
 thought:我应该调用工具查询北京的天气情况
Action:
{
        "function_name":"get_weather",
        "function_params":{
                "location":"北京"
        }
}

可以看出模型已经进行了思考,并且返回了可以调用的工具了

第二步,如果从“第一步”的返回值中可以提取调用工具的json

第三步,调用真实工具,获取真实结果(这里是伪代码)

    invoke_function(**function_name,**function_params)

第四步,将工具调用的结果追加到message中,一起给到模型,让它总结回答:

messages.append({"role": "assistant", "content": f"调用Action的结果:{tianqi}"})
message = send_messages(messages)

print(f"Model-2th>\n {message.content}")

返回值:

Model-2th> 
北京今天的天气晴朗。

三、tools功能的演进

随着LLM调用工具的普及,这种调用方法集成在大模型api接口中就变得越重要。

大部分模型厂商已经支持了function call,下面是deepseek工具调用的一个例子[1]:

response = client.chat.completions.create(
	model="deepseek-chat",
	messages=messages,
	tools=tools
)

其中 tools是可以供模型选择的工具。

写在最后

从0开发写function的逻辑,需要让模型思考、观察、行动。其实这个流程的循环其实就是ReAct框架的原理。

程序员为什么要学大模型?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉优快云大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)

在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉优快云大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值