LLM学习(5)——系统评估与优化

5.1 如何评估 LLM 应用

5.1.1 验证评估的一般思路

通过不断寻找Bad Case并进行针对性优化,将这些案例逐步加入验证集,形成一个具有一定样本数量的验证集。针对这种验证集,逐个进行评估变得不切实际,需要一种自动评估方法来对整体性能进行评估。验证迭代是构建以LLM为核心的应用程序的重要步骤,通过不断寻找Bad Case、调整Prompt或优化检索性能,推动应用程序达到目标性能和准确性。接下来,将介绍大模型开发评估的几种方法,并简要介绍从少数Bad Case针对性优化到整体自动评估的一般思路。

5.1.2大模型评估方法

人工评估的一般思路

准则一 量化评估
为保证很好地比较不同版本的系统性能,量化评估指标是非常必要的。我们应该对每一个验证案例的回答都给出打分,最后计算所有验证案例的平均分得到本版本系统的得分。量化的量纲可以是05,也可以是0100,可以根据个人风格和业务实际情况而定。
量化后的评估指标应当有一定的评估规范,例如在满足条件 A 的情况下可以打分为 y 分,以保证不同评估员之间评估的相对一致。
以下是对于问题

  1. 南瓜书和西瓜书有什么关系?
  2. 应该如何使用南瓜书?

两个模板的结果

以下是相应的代码[注:相对于前文这里我更改了嵌入的方式因为Gemini的嵌入实在太差了,还有pdf的导入方式,我用PyMuPDFLoader替代了PyPDFLoader因为PyPDFLoader输出会出现乱码]

Copy
from langchain.prompts import PromptTemplate
from langchain.chains import RetrievalQA


template_v1 = """使用以下上下文来回答最后的问题。如果你不知道答案,就说你不知道,不要试图编造答
案。最多使用三句话。尽量使答案简明扼要。总是在回答的最后说“谢谢你的提问!”。
{context}
问题: {question}
"""

QA_CHAIN_PROMPT = PromptTemplate(input_variables=["context","question"],
                                 template=template_v1)



qa_chain = RetrievalQA.from_chain_type(llm,
                                       retriever=vectordb.as_retriever(),
                                       return_source_documents=True,
                                       chain_type_kwargs={"prompt":QA_CHAIN_PROMPT})

print("问题一:")
question = "南瓜书和西瓜书有什么关系?"
result = qa_chain({"query": question})
print(result["result"])

print("问题二:")
question = "应该如何使用南瓜书?"
result = qa_chain({"query": question})
print(result["result"])
Copy
template_v2 = """使用以下上下文来回答最后的问题。如果你不知道答案,就说你不知道,不要试图编造答
案。你应该使答案尽可能详细具体,但不要偏题。如果答案比较长,请酌情进行分段,以提高答案的阅读体验。
{context}
问题: {question}
有用的回答:"""

QA_CHAIN_PROMPT = PromptTemplate(input_variables=["context","question"],
                                 template=template_v2)

qa_chain = RetrievalQA.from_chain_type(llm,
                                       retriever=vectordb.as_retriever(),
                                       return_source_documents=True,
                                       chain_type_kwargs={"prompt":QA_CHAIN_PROMPT})

print("问题一:")
question = "南瓜书和西瓜书有什么关系?"
result = qa_chain({"query": question})
print(result["result"])

print("问题二:")
question = "应该如何使用南瓜书?"
result = qa_chain({"query": question})
print(result["result"])

我们可以看出来,对于问题1模板A有稍微好一些的结果,对于问题二两者结果一致,所以这种评估方式其实并不推荐,首先难以确定哪个结果更好,其次需要两个问题的答案都更好非常困难。

多维评估#

对于大模型的评估,可以从多个维度出发,包括知识查找正确性、回答一致性、回答幻觉比例、回答正确性、逻辑性、通顺性和智能性等方面进行评估。每个维度都可以设计相应的评估指标,并在0~1之间进行打分,以综合评估系统的性能表现。同时,评估指标应当结合业务实际,量化评估和多维评估相结合,全面评估系统的性能表现。

Copy
print("问题:")
question = "应该如何使用南瓜书?"
print(question)
print("模型回答:")
result = qa_chain({"query": question})
print(result["result"])
print(result["source_documents"])


对答案进行多维打分

简单自动评估#

构造客观题
构造如下客观题

Copy
prompt_template = '''
请你做如下选择题:
题目:南瓜书的作者是谁?
选项:A 周志明 B 谢文睿 C 秦州 D 贾彬彬
你可以参考的知识片段:
~~
{}
~~
请仅返回选择的选项
如果你无法做出选择,请返回空
'''

我们规定如下打分策略:全选1分,漏选0.5分,错选不选不得分(错选也可以设为扣1分)这样我们就可以实现快速的评估

计算相似度#

构造标准答案并计算回答与标准答案相似度

使用大模型进行评估#

构造 Prompt Engineering 让大模型充当一个评估者的角色,从而替代人工评估的评估员;同时大模型可以给出类似于人工评估的结果,因此可以采取人工评估中的多维度量化评估的方式,实现快速全面的评估。

Copy
# 使用第二章讲过的 OpenAI 原生接口

from openai import OpenAI

client = OpenAI(
    # This is the default and can be omitted
    api_key=os.environ.get("OPENAI_API_KEY"),
)


def gen_gpt_messages(prompt):
    '''
    构造 GPT 模型请求参数 messages
    
    请求参数:
        prompt: 对应的用户提示词
    '''
    messages = [{"role": "user", "content": prompt}]
    return messages


def get_completion(prompt, model="gpt-3.5-turbo", temperature = 0):
    '''
    获取 GPT 模型调用结果

    请求参数:
        prompt: 对应的提示词
        model: 调用的模型,默认为 gpt-3.5-turbo,也可以按需选择 gpt-4 等其他模型
        temperature: 模型输出的温度系数,控制输出的随机程度,取值范围是 0~2。温度系数越低,输出内容越一致。
    '''
    response = client.chat.completions.create(
        model=model,
        messages=gen_gpt_messages(prompt),
        temperature=temperature,
    )
    if len(response.choices) > 0:
        return response.choices[0].message.content
    return "generate answer error"

question = "应该如何使用南瓜书?"
result = qa_chain({"query": question})
answer = result["result"]
knowledge = result["source_documents"]

response = get_completion(prompt.format(question, answer, knowledge))
response

BULE 打分#

n-gram:指一个语句里面连续的n个单词组成的片段
精确度:指Candidate(生成模型的预测文本)语句里面的n-gram在所有Reference(标准文本)语句里面出现的概率
modified n-gram recision:Modified n−gram precision=Numberoftotalgeneratedn−gramsNumberofmatchingn−grams

  • Number of matching n-grams表示生成文本中与参考文本匹配的n-gram序列数量;
  • Number of total generated n-grams表示生成文本中总的n-gram序列数量。

BP
当待评价译文同任意一个参考译文长度相等或超过参考译文长度时,BP值为1,当待评价译文的长度较短时加一个权重
BP={1ifc>re1−r/cifc≤r
然后我们就可以计算分数
Bleu=BP⋅exp⁡(∑n=1Nwnlog⁡pn)

如何系统的去学习AI大模型LLM ?

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包》,扫码获取~

👉优快云大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

在这里插入图片描述

四、AI大模型商业化落地方案

img

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
      - L1.4.1 知识大模型
      - L1.4.2 生产大模型
      - L1.4.3 模型工程方法论
      - L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
      - L2.1.1 OpenAI API接口
      - L2.1.2 Python接口接入
      - L2.1.3 BOT工具类框架
      - L2.1.4 代码示例
    • L2.2 Prompt框架
      - L2.2.1 什么是Prompt
      - L2.2.2 Prompt框架应用现状
      - L2.2.3 基于GPTAS的Prompt框架
      - L2.2.4 Prompt框架与Thought
      - L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
      - L2.3.1 流水线工程的概念
      - L2.3.2 流水线工程的优点
      - L2.3.3 流水线工程的应用
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
      - L3.1.1 Agent模型框架的设计理念
      - L3.1.2 Agent模型框架的核心组件
      - L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
      - L3.2.1 MetaGPT的基本概念
      - L3.2.2 MetaGPT的工作原理
      - L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
      - L3.3.1 ChatGLM的特点
      - L3.3.2 ChatGLM的开发环境
      - L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
      - L3.4.1 LLAMA的特点
      - L3.4.2 LLAMA的开发环境
      - L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

学习计划:

  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的所有 ⚡️ 大模型 LLM 学习资料已经上传优快云,朋友们如果需要可以微信扫描下方优快云官方认证二维码免费领取【保证100%免费

全套 《LLM大模型入门+进阶学习资源包↓↓↓ 获取~

👉优快云大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值