题面:
威尔逊定理传送门
AC code:
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <map>
using namespace std;
typedef long long LL;
const int times = 60;
int number = 0;
map<long long, int>m;
long long Random( long long n ) //生成[ 0 , n ]的随机数
{
return ((double)rand( ) / RAND_MAX*n + 0.5);
}
long long q_mul( long long a, long long b, long long mod ) //快速计算 (a*b) % mod
{
long long ans = 0;
while(b)
{
if(b & 1)
{
//b--;
ans =(ans+ a)%mod;
}
b /= 2;
a = (a + a) % mod;
}
return ans;
}
long long q_pow( long long a, long long b, long long mod ) //快速计算 (a^b) % mod
{
long long ans = 1;
while(b)
{
if(b & 1)
{
ans = q_mul( ans, a, mod );
}
b /= 2;
a = q_mul( a, a, mod );
}
return ans;
}
bool witness( long long a, long long n )//miller_rabin算法的精华
{//用检验算子a来检验n是不是素数
long long tem = n - 1;
int j = 0;
while(tem % 2 == 0)
{
tem /= 2;
j++;
}
//将n-1拆分为a^r * s
long long x = q_pow( a, tem, n ); //得到a^r mod n
if(x == 1 || x == n - 1) return true; //余数为1则为素数
while(j--) //否则试验条件2看是否有满足的 j
{
x = q_mul( x, x, n );
if(x == n - 1) return true;
}
return false;
}
bool miller_rabin( long long n ) //检验n是否是素数
{
if(n == 2)
return true;
if(n < 2 || n % 2 == 0)
return false; //如果是2则是素数,如果<2或者是>2的偶数则不是素数
for(int i = 1; i <= times; i++) //做times次随机检验
{
long long a = Random( n - 1 ) + 1; //得到随机检验算子 a
if(!witness( a, n )) //用a检验n是否是素数
return false;
}
return true;
}
LL p = 0,q = 0;
LL q_mul1(LL x,LL y,LL mod){
LL res= 0;
while(y > 0){
if(y & 1){
res = (res + x) % mod;
}
x = (x + x) % mod;
y >>= 1;
}
return res;
}
LL q_power(LL x,LL y,LL mod){
LL res = 1;
while(y > 0){
if(y & 1){
res = q_mul1(res,x,mod);
}
x = q_mul1(x,x,mod);
y >>= 1;
}
return res;
}
void solve(){
LL ans = p-1;
for(LL i = q+1;i <= p-1;++i){
ans = q_mul1(ans , q_power(i,p-2,p),p);
}
printf("%lld\n",ans);
}
int main( ){
int T = 0;
scanf("%d",&T);
while(T--){
scanf("%lld",&p);
q = 1e10;
for(LL i = p-1;i >= 2;--i){
if(miller_rabin(i)){ //检验tar是不是素数
q = i;
break;
}
}
solve();
}
return 0;
}