题目传送门
首先推荐一个博客写的不错:https://blog.youkuaiyun.com/u011523762/article/details/50878613
然后在他的基础上,加上自己的理解:
首先贴上自己用二分搜索3个版本写的代码(标准库的不算)
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<vector>
#include<set>
#include<stack>
#include<queue>
#include<map>
#include<cstring>
#include<string>
#include<cmath>
using namespace std;
typedef long long LL;
#define INF 0x3f3f3f3f
#define PI acos(-1.0)
#define pii pair<int,int>
#define all(x) x.begin(),x.end()
#define mem(a,b) memset(a,b,sizeof(a))
#define per(i,a,b) for(int i = a;i <= b;++i)
#define rep(i,a,b) for(int i = a;i >= b;--i)
const int maxn = 1e5;
int n = 0,u = 0;
int a[maxn+10];
/*
int solve(int l,int x){
int r = n;
int ans = -1;
while(l <= r){
int mid = (l + r) >> 1;
if(a[mid] > x){
r = mid - 1;
}else{
ans = mid;
l = mid + 1;
}
}
return ans;
}
*/
/*
int solve(int l,int x){
int r = n+1;
int ans = -1;
while(l < r){
int mid = (l + r) >> 1;
if(a[mid] > x){
r = mid;
}else{
ans = mid;
l = mid + 1;
}
}
return r-1;//这里返回的是r-1,因为是[l,r)
}
*/
int solve(int l,int x){
int r = n+1;
--l;
int ans = -1;
while(l + 1 < r){
int mid = (l + r) >> 1;
if(a[mid] > x){
r = mid;
}else{
l = mid;
}
}
//return l;//
return r-1;
}
/*根据上面3种情况,可以得到规律:
[l,r]返回mid; [l,r)返回r-1; (l,r)返回r-1或者l
1,如果是闭区间则要返回mid
2,如果半开半闭区间,r开时,返回r-1;l,r都开时,返回 r-1,或者l都可以
*/
int main(){
while(~scanf("%d %d",&n,&u)){
per(i,1,n){
scanf("%d",&a[i]);
}
sort(a+1,a+1+n);
double ans = 0;
for(int i = 1;i <= n-2;++i){
//int k = lower_bound(a+i,a+1+n,a[i]+u) - a;
int k = solve(i,a[i]+u);
//cout << k << endl;
if(k <= i+1){
continue;
}
//if(a[k] != a[i] + u){//不用lower_bound后,就不需要了,因为自己写的二分
//函数一定是<=a[i]+u的,而lower_bound函数是>=
// --k;
//}
ans = max(ans,(a[k] - a[i+1])*1.0 / (1.0 * (a[k] - a[i])) );
}
if(ans == 0){
printf("-1\n");
}else{
printf("%.10lf\n",ans);
}
}
return 0;
}
有些规律我已经在代码注释里面写得比较清楚了,这里在重点强调一遍:
根据上面3种情况,可以得到规律:
[l,r]返回mid; [l,r)返回r-1; (l,r)返回r-1或者l
1,如果是闭区间则要返回mid
2,如果半开半闭区间,r开时,返回r-1;l,r都开时,返回 r-1,或者l都可以
还有就是推荐博客里面写的:https://blog.youkuaiyun.com/u011523762/article/details/50878613
这个看懂的话,不论是二分查找一个值是否在数组中,还是像lower_bound类似的功能(找到<=key的最大下标),都游刃有余。